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The philosophy of penalty and barrier methods is simple. In the penalty methods you give
a ��ne� for violating the constraints, and obtain approximate solutions to your original
problem by balancing the objective function and a penalty term involving the constraints.
By increasing the penalty, the approximate solution is forced to approach the feasible
domain, and hopefully, the solution of the original constrained problem.

A typical way of formulating a penalty method is to augment the objective function f with
certain penalty terms, e.g.,

Q (x; �) = f (x) +
1

�

X
i2E
jci (x)j+

1

�

X
i2I
max [0;�ci (x)] : (1)

Here, jci (x)j = 0 only when ci (x) = 0, whereas max [0;�ci (x)] = 0 whenever ci (x) � 0.
In practice, one could consider using di¤erent �-s for the two sets, and everything should
be formulated in a dimensionally consistent way. Minimizing Q (x; �) is now essentially an
unconstrained problem, and the idea is that the corresponding solutions, x� (�), approach
the solution of the original problem in the limit when � tends to 0,

x� = lim
�!0

x� (�) :

For the barrier methods, you move around in the interior of the feasible domain, and every
time you try to approach the boundary, you feel a repulsive force. The force makes you
stop close to the exact solution, if this happens to be at the boundary. As we know, this is
typically the case for constrained problems. By weakening the barrier gradually, we obtain
approximate solutions which hopefully converge to the exact solution. A logarithmic barrier
is quite popular for inequality constraints,

Q (x; �) = f (x)� �
X
i2I
log ci (x) : (2)

In the barrier case, it is of course necessary that 
 has a non-empty interior, and that it is
at all possible to reach a boundary point solution from the interior of 
 (can you imagine
a set where this will not be possible?).

Below we shall assume that both f and the ci-s are as smooth as needed in the proofs.

All this sounds reasonable and simple, but unfortunately, the numerical problems we en-
counter are not quite straightforward. This is all experienced in the special case of quadratic
penalty methods, which we therefore consider next. Most of the theory is found in N&W,
Sec. 17.1.

This note covers our curriculum for Penalty and Barrier Methods.
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1 The Quadratic Penalty Method

In the Quadratic Penalty Method the constraint penalties are all entered in terms of
quadratic functions. This may in many cases result in Least Square problems, for which
there are very e¢ cient numerical algorithms. We shall for simplicity assume only equality
constraints, so we consider

min
x
f (x) ;

ci (x) = 0; i 2 E : (3)

The penalty now has the form
1

�

X
i2E
c2i (x) ; � > 0; (4)

and the unconstrained penalized problem is therefore

min
x
Q (x; �) = min

x

(
f (x) +

1

�

X
i2E
c2i (x)

)
: (5)

Let us introduce the vector of constraints,

c (x) = (c1 (x) ; c2 (x) ; � � � ; cr (x))0 ; (6)

and the Jacobian matrix for the constraints,

A = A (x) =

26664
rc1 (x)
rc2 (x)
...

rcr (x)

37775 : (7)

We recall that the LICQ condition holds at x if A (x) has full row rank.

The general idea is to solve
xn = argmin

x
Q (x; �n) (8)

for a sequence of �n-s where �n ! 0, and hope that at least a subsequence, fxnkg, converges
to a solution x�of the original problem.

The �rst theorem considers the case where the unconstrained penalized problems in (5) are
solved exactly for each �.

Theorem (N&W 17.1): Let fxng be global minima of Eqn. 5 for a sequence of �n-s
converging to 0, and such that xn �! �x. Then �x is a global minimum of the problem in
(3).

Proof: Assume that x� is a global minimum of problem (3). Since xn are global minima
of the penalized problems we must have

f (xn) +
1

�n

X
i2E
c2i (xn) � f (x�) +

1

�n

X
i2E
c2i (x

�) = f (x�) (9)
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(x� 2 
, so that ci (x�) = 0!). Hence,

0 �
X
i2E
c2i (xn) � �n [f (x�)� f (xn)] : (10)

Since f (x�)� f (xn)! f (x�)� f (�x) and �n ! 0,X
i2E
c2i (�x) = lim

n!1

X
i2E
c2i (xn) = 0: (11)

Thus, for all i 2 E , ci (�x) = 0, and �x is feasible. Moreover, Eqn. 9 also shows that

0 � 1

�n

X
i2E
c2i (xn) � f (x�)� f (xn) ; (12)

and in the limit,
0 � f (x�)� f (�x) : (13)

But x� is already the global minimum of f (x) on 
, and hence f (x�) = f (�x). Thus, �x is
feasible and a global minimum to problem (3) as well.

The next theorem deals with the more practical situation where the penalized problems
are solved only approximately. In this case, the approximate solutions will not necessary
converge to a minimum, but under favorable conditions, to a KKT-point:

Theorem (N&W 17.2): Assume that fxng is a sequence of approximate solutions of
problem (5) where

jrxQ (xn; �n)j � �n;
�n; �n ! 0: (14)

Assume that xn ! x� and that the LICQ holds at x�. Then x� will be a KKT-point and

��i = lim
n!1

�2ci (xn)
�n

; i 2 E : (15)

Proof: It is not really necessary that fxng converges to x�. As long as fxng is bounded,
there exists convergent subsequences which could be used instead.

We �rst of all observe that

r
 X
i2E
c2i (x)

!
= 2

X
i2E
ci (x)rci (x) : (16)

According to the assumptions,

jrxQ (xn; �n)j =
�����rf (xn) + 2

�n

X
i2E
ci (xn)rci (xn)

����� � �n: (17)

Since rf (xn)! rf (x�) and thus stays �nite and �n ! 0, we must have that

lim
n!1

X
i2E
ci (xn)rci (xn) = 0: (18)
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But this implies that X
i2E
ci (x

�)rci (x�) = c (x�)0A (x�) = 0; (19)

and, since the LICQ was supposed to holds at x�, that c (x�) = 0 (clever argument!). Thus,
x� 2 
. It is now reasonable to introduce the vector

�n
�
=
�2ci (xn)
�n

(20)

for each n. Then
rxQ (xn; �n) = rf (xn)� �0nA (xn) : (21)

Since the LICQ condition holds at x�, it also holds at neighboring points (we assume that
A (x) is a continuous matrix of x). For such xn-s we have

A (xn)A (xn)
0 �n = A (xn) (rf (xn)�rxQ (xn; �n))

0 ; (22)

and

�� = lim
n!1

�n

= lim
n!1

�
A (xn)A (xn)

0��1 �A (xn) (rf (xn)�rxQ (xn; �n))
0� (23)

=
�
A (x�)A (x�)0

��1
A (x�)rf (x�)0 :

In conclusion,
rf (x�) = ��0A (x�) ; (24)

which, together with x� 2 
 and ��0c (x�) = 0, shows that x� is a KKT-point.

2 Numerical Aspects

In the methods above, we solve unconstrained problems for each �, and the convergence
behavior is therefore connected to the behavior of the Hessian of the objective function
near to the solution. Recalling how we computed the Hessian for Least Square problems,
it is easy to derive that

r2
xxQ (x; �) = r2

xx

 
f (x) +

1

�

X
i2E
c2i (x)

!

= r2f (x) +
2

�

X
i2E
ci (x)r2ci (x) +

2

�
A0 (x)A (x) : (25)

Close to the solution we therefore have

r2
xxQ (x; �) t r2f (x)�

X
i2E
��ir2ci (x) +

2

�
A0 (x)A (x)

= r2
xxL (x; ��) +

2

�
A0 (x)A (x) : (26)
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The Hessian for Q around the solution is therefore a sum of a slowly varying matrix,
r2
xxL (x; ��), and a positive semi-de�nite matrix, 2�A

0 (x)A (x), of order ��1. Ifr2
xxL (x; ��) >

0, also r2
xxQ (x; �) > 0, and the problem has a unique minimum,� if it has solutions at

all. For algorithms like the Steepest Descent or the Conjugate Gradient (CG) method, the
speed of convergence is governed by the eigenvalue distribution of the Hessian, and there
is a small lemma which describes this in a very neat way:

Key Lemma: Consider a matrix of the form

M = G+
1

�
A0A (27)

where G > 0, A has full row rank r, and Z is a matrix of basisvectors for N (A). Then the
eigenvalues of M split into two groups when �! 0. The �rst group behaves asymptotically
as �

�1
�
;
�2
�
; � � � ; �r

�

�
; (28)

where f�1; �2; � � � ; �rg are the non-zero eigenvalues of A0A. The remaining n � r eigen-
values converge to the eigenvalues of Z 0GZ.

Proof: The proof for the �rst group is simple: Consider the matrix �M = A0A + �G,
which asymptotically has f�1; �2; � � � ; �rg as non-zero eigenvalues, since �G! 0.

For the other group, extend Z to an orthogonal matrix P = [Z V ] such that

P 0A0AP =

�
0 0
0 �

�
: (29)

Then

P 0MP = P 0GP +

�
0 0
0 �=�

�
=

�
~G11 ~G12
~G21 ~G22 + �=�

�
: (30)

Sublemma: Let

B =

�
B11 B12
B21 B22 (�)

�
> 0 (31)

and assume that B22 (�) = O (1=�) when �! 0. Then

lim
�!0

B�1 (�) =

�
B�111 0
0 0

�
: (32)

Proof: Left to you! (First recall that both B11 and B22 (�) are positive de�nite, since B
is positive de�nite. Then consider the equations for C = B�1 in a partitioned form, either
by solving the matrix equations,�

C11 C12
C21 C22

� �
B11 B12
B21 B22

�
=

�
I1 0
0 I2

�
; (33)

or looking up the result in a linear algebra textbook).

Once the sublemma is proved, the main lemma follows by observing that ~G11 = Z
0GZ.
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Corollary: The condition number of r2
xxQ (x; �) is O (1=�) when �! 0.

Example: The Rosenbrock Banana function is often used as an example of a notorious
di¢ cult case for unconstrained algorithms. The function may be considered as solving the
following trivial problem by means of a Quadratic Penalty Method:

min
x2R2

(1� x1)2 ;

x2 � x21 = 0: (34)

Thus,

Q (x; �) = (1� x1)2 +
1

�

�
x2 � x21

�2
; (35)

Recall that we experienced the minimum of Q (x; �) to be virtually unreachable with the
Steepest Descent method already for � = 0:01.

It is worth noting that the CG method will be excellent for the above problem if the number
of constraints (r) is small. This is actually discussed (without any reference to the later
penalty methods) in N&W following Theorem 5.5 on p. 115�117, and is related to the
optimal interpolation property of the CG. According to Luenberger, the way to operate
the CG method is then to make a restart, with a Steepest Descent step, every r-th iteration
(However, according to some limited numerical experiments carried out using Matlab, the
restart does not seem to be really worth the e¤ort).

3 The Barrier Methods

The theory for Barrier Methods resembles in many ways the theory above. As noted in
N&W, the most popular barrier is the logarithm:

B (x) = �
X
i2I
log (ci (x)) ; x 2 
i; (36)

where 
i denotes the interior of 
. The term interior may be understood in a relative
sense, e.g. when the search is limited to a simple set such as a hyperplane.

The logarithmic barrier function was, according to Fletcher, �rst introduced by Ragnar
Frisch in 1955 (First Norwegian Nobel Prize winner in Economics).

As mentioned above, barrier methods require that 
 has a non-empty interior and that all
points on the boundary can be reached from the interior (as limits of sequences consisting
of interior points). This last condition is not explicitly mentioned in N&W, but is of course
essential. Sets with this property are (reasonably enough) called robust in Luenberger.

In many practical cases, �ci (x) will be smooth convex functions, and then 
 will be convex.
Also B (x) will be convex for x 2 
i in this case. This follows easily by computing the
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Hessian of B:

r2B (x) = r2

 
�
X
i2I
log (ci (x))

!

= �
X
i2I

1

ci (x)
r2ci (x) +

X
i2I

1

ci (x)
2rci (x)

0rci (x) ; x 2 
i: (37)

Since ci (x) > 0, and both r2 (�ci (x)) and rci (x)rci (x)0 are positive semide�nite, so is
r2B (x).

If, in addition, f is convex, then

Q (x; �) = f (x) + �B (x) ; � > 0; (38)

will be convex as well. If 
 is bounded, the problem

min
x
Q (x; �) (39)

will then have a convex set of global minimizers.

At a minimum x�,

0 = rQ (x; �) = r (f (x) + �B (x))

= rf (x�) +
X
i2I

��
ci (x�)

rci (x�) ; (40)

and it is also here reasonable to introduce

�i (�)
�
=

�

ci (x�)
: (41)

If now x�n �!
n!1

x� and the LICQ holds for the active constraints at x�, we have, exactly

as above, that for i 2 A (x�),

lim
n!1

�i (�n) = �
�
i =

�
A (x�)A (x�)0

��1
A (x�)rf (x�)0 (42)

(Note that A (x�) only contains the gradients of the active constraints). Being at the
same time a limit of the non-negative numbers �n=ci (x�n), the Lagrange multipliers will
be non-negative, and also equal to 0 for the non-active constraints at x�(since c (x�) > 0).

In conclusion, we have shown that x� is a KKT-point for the original problem.

The Hessian, r2
xxQ (x; �), has a similar structure as above. Near x

� we have in particular

r2
xxQ (x; �) = r2f (x)�

X
i2I

�

ci (x)
r2ci (x) +

X
i2I

�

ci (x)
2rci (x)

0rci (x)

t r2
xxL (x�; ��) +

X
i2A(x�)

(��i )
2

�
rci (x�)0rci (x�) : (43)

Again, the Hessian has eigenvalues splitting in two groups, but now the group tending to
in�nity when �! 0 only corresponds to the active constraints at x�.
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4 The Logarithmic Barrier Method for the LP-problem

The material in this section is not mentioned in N&W. Nevertheless, it forms the basis of
what is probably among the fastest interior methods for large scale LP-problems that are
currently available. It is di¤erent from the interior point methods treated in Chapter 14.
My main reference is Gonzaga (1992), not mentioned in N&W.

The positive cone,
Rn+ = fx ; x � 0g (44)

is a simple robust set, and the main idea is trying to solve the standard LP-problem

min
x
c0x;

Ax = b; (45)

x � 0;

by introducing a logarithmic barrier for the cone,

B (x) = �
nX
i=1

log (xi) ; x > 0: (46)

We observe that

rB (x)0 = � vect
�
1

xi

�
;

r2B (x) = diag

�
1

x2i

�
: (47)

The barrier problem is thus

min
x
Q (x; �) = min

x
fc0x+ �B (x)g ;

Ax = b (and x > 0). (48)

(Recall that A is assumed to have full row rank r). It is clear that the problem is convex,
and assuming that solutions exist, the solution is in fact unique, since Q is strictly convex.
This set of solutions fx (�)g�>0 is called the Central Path (The same term is also used for
various other situations in N&W). The central path turns out to have a surprising property,
but let us �rst recall the Dual Problem to the standard form:

max
�
b0�;

A0� + s = c; (49)

s � 0;

and the essence of the Duality Theorem:

b0� � max
�
b0� = min

x
c0x � c0x: (50)
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Theorem: Let x (�) be the solution of problem (48). Then

s (�) = � vect

�
1

xi (�)

�
(51)

and
� (�) = (AA0)

�1
A (c� s (�)) (52)

are feasible vectors for the dual problem, and

x (�)0 s (�) = c0x (�)� b0� (�) = �n: (53)

This theorem gives us a bound on how far we are from the optimal objective value and
shows in particular that c0x (�) will always approach the optimal value when �! 0.

The proof is not particularly di¢ cult. Let P be the projection operator on N (A). Sup-
pressing the dependence on �, it is always possible to write

c� s = P (c� s) + A0� (54)

for some � 2 Rr. Thus, s is feasible if and only if
s � 0;

P (c� s) = 0: (55)

Since x (�) is a minimum,
rQ (x; �) d � 0 (56)

for all feasible directions, which in this case are simply the non-zero vectors in N (A). If d
is feasible, so is �d as well, and therefore,

rQ (x; �) d = 0 for all d 2 N (A) : (57)

Thus, rQ (x; �) is orthogonal to N (A) and

0 = P
�
rQ (x; �)0

�
= P

�
c� � vect

�
1

xi (�)

��
(58)

= P (c� s) :
Moreover, s > 0 by the de�nition in the theorem.

Since we have veri�ed that P (c� s) = 0, we also have from Eqn. 54 that

A0� = c� s; (59)

which may be solved for �, as given in the theorem.

Finally,

c0x (�)� b0� = x (�)0 c� x (�)0A0�
= x (�)0 s (60)

=
nX
i=1

xi (�)�
1

xi (�)
= n�:

By staying on the central path
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� we easily �nd a feasible dual solution

� we have an exact expression for the duality gap, that is, how far we are from the
optimal objective value.

How do we stay on the central path? Actually, there are several approaches, but �rst of
all we need to �nd a feasible start vector, that is, an interior feasible point. The following
neat trick is somewhat similar to Phase 1 for the SIMPLEX method.

Consider the standard form in Eqn. 45. De�ne

a = b� Ae;
e = (1; 1; � � � ; 1)0 ; (61)

and introduce an additional component xn+1 to x. Then solve the extended problem

min [c0 1]

�
x
xn+1

�
= min fc0x+ xn+1g (62)

with the constraints �
A a

� � x
xn+1

�
= b; (63)

x � 0 ; xn+1 � 0:

The extended problem has the interior feasible point

�
e
1

�
=

26664
1
1
...
1

37775 : (64)

(Check it!).

Moreover, the optimal solution will be �
x�

0

�
; (65)

if the original problem has a solution x� at all.

Since both the gradient and the Hessian of Q (x; �) are very simple, a gradient projection
approach looks reasonable, and the optimal methods now appears to be the projected
Newton direction followed by a line search: From x0 we �rst de�ne

d = �r2Q (x0; �)
�1rQ (x0; �)0 (66)

= diag
�
x20i
	�
vect

�
1

x0i

�
� c

�

�
: (67)
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and then we solve
x1 = argmin

�
Q (x0 + �Pd; �) ; (68)

where P is the projection operator on N (A).

Note that the projection operator has the form

P = I � A0 (AA0)�1A (69)

and is therefore independent of �.

There are apparently di¤erent strategies whether one should take several projected Newton
iterations between each time � is decreased, or take small steps in � for each Newton
iteration. In any case, the theorem above tells us how far we are from the solution, and
these methods solve the LP problem to L signi�cant digits in O (Ln3) operations.
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