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QUADRATIC PROGRAMMING BASICS 
H. E. Krogstad 

Spring 2008/Rev. 2010 
 
Quadratic Programming (QP): 
 

• Common form for a lot of problems 
• The iterative step in Sequential Quadratic Programming (SQP) methods 

 
THE QP PROBLEM 
 
We are considering problems where the objective function is quadratic,  

 

( ) 1 , symmetric.
2

q x x Gx d x G′ ′= +  
  
For the non-constrained problem we know  

( ) ,q x Gx d′∇ = +   
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1 when 0x G d G∗ −= − >  
In general, G will not necessarily be positive definite, not even semi-definite. 
 
The feasibility domain Ω is defined in terms of  
 

• linear equality constraints, 

, ,i ia x b i′ = ∈E  
• linear inequality constraints,  

, .i ia x b i′ ≥ ∈I  
 
 
NOTE: 
 

• Ω is convex 
 

• The objective function will be convex if 0G ≥ . 
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Contours of the quadratic
objective function  
(convex case) 

Ω 

Absolute minimumEquality  
constrains

Inequality  
constraints 
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Indefinite                                         Positive definite 

+
+– –
Ω Ω

min

 
 

An indefinite matrix G may lead to several local minima/maxima! 
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THE QP PROBLEM WITH EQUALITY CONSTRAINTS ONLY 
 

This case can always be reduced to the following: 
 

minqx 

Ax  b,

A has full rank r  n.
 

 
{ } ( ){ }−Ω = = = + = ∈0 0; ; , contains a basis for , .n rx Ax b x Zu Ax b Z N A u R  

 
1. Solution by Eliminating Unknowns 

 
From the linear system of constraints, express r  variables in terms of the  remaining 
n r−  unknowns. Insert this into the objective function and solve the  unconstrained 

problem in the remaining n r−  variables! 
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2. Solution by the Null-Space Method 
Find an 0x Ω∈ , and a basis for the null space of A . Insert 0x x Zu= + : 

( ) ( ) ( ) ( ) ( )

( )

0 0 0 0

0

1
2

1 const. , , .
2

f u q x Zu x Zu G x Zu d x Zu

u Gu d u G Z GZ d Z Gx d

′

′

′= + = + + + +

′ ′ ′= + + = = +  

( ) 0.f u Gu d∇ = + =  

Three cases, depending on :G  
 
1)  A unique solution if the matrix is positive definite  
 
2)  Infinitely many solutions if G  is singular, as long as it is positive semi-definite and 
 

d̃ ∈ R G̃  . 
3)  No solutions if it is not positive semi-definite (or ( )d R G∉ ) 
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3. Solving the KKT-equations 

 
The Lagrange function is 

( ) ( )1, ,
2

L x x Gx d x b Axλ λ′ ′ ′= + − −  
 and hence, 

( ), ' 0,
.

xL x Gx d A
Ax b
λ λ′∇ = + + =

=  

 Collected into a system:  

G A ′

A 0

x




−d

b
.

 
  
Lemma 16.1: The coefficient matrix of the system is non-singular if A has full rank 
and G is positive definite on the null-space of A.  
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Assume that A has full rank and G is positive definite on the null space of A, that is 
( ) ( )' ' ' ' 0 0Zu G Zu u Z GZu u Gu u= = > ∀ ≠ . 

 
Then (x*,λ*) is a unique KKT point and a global minimum 

 
(Follows from the Null-Space Method, which then solves a strictly convex problem). 
 
There are many ways of solving the KKT system in this case. However, if x* is known,  
 

( ) ( )1* ' *AA A Gx dλ −= − +  
 
If λ* is known, we reduce the over-determined system 
 

( )' *Gx d A
Ax b

λ= − +

=  
 

to a (non-singular) system with n unknowns (Simple if G > 0!)  
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INEQUALITY CONSTRAINTS 
 
 

 
 
Let us consider the general problem 
 

1min ,
2

0, ,

0, .

x

i i

i i

x Gx d x

a x b i

a x b i

′

′

⎧ ⎫′ ′+⎨ ⎬
⎩ ⎭
− = ∈

− ≥ ∈

E

I  

 
We assume that all equality constraints are linearly independent. 
 
 Let as A   or  Ax    denote the active set of constraints in x  

Inequality constraints spoil the elegant theory above completely! 
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The KKT-conditions: 

( )

( )
( )
( )

( )

0,

, ,

, \ ,

0,

0,

i i
i x

i i

i i

i

i i i

Gx d a

a x b i x

a x b i x

i x

a x b i

∈

′

′

′

+ − =

= ∈

> ∈

≥ ∈ ∩

− = ∈ ∪

∑
A

λ

λ

λ

A

I A

I A

E I  
 
(Recall that the LICQ conditions are not necessary for linear constraints). 
 
If *x  is a KKT-point for the full problem, then   *x    and a corresponding subset of the 
Lagrange multipliers is also a KKT-point for the reduced problem: 

min
x

1
2 x ′Gx  d ′x ,

ai
′x  bi , i ∈ Ax ∗ 
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• The reduced problem is a QP problem with equality constraints. 

 
 

• If we have an active set  A   and have found a KKT-point  x ∗  for the reduced 
problem, it is easy to check the KKT-conditions for the full problem. 

 
 

• The next step would be to check the 2nd order conditions: Form the matrix A 
consisting of the gradients of the active constraints and investigate 'Z GZ , where 
Z  is a basis of  NA .  Unless 0G ≥ , in which case the KKT-points are global 
minima! 
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ACTIVE SET METHODS 
 

1.   Assume we are in a point 0x ∈Ω  .  
 
2.   We choose a working set  W   so that 

E ⊂ W ⊂ Ax 0 .
 

 
 3.  Let WA   be the corresponding matrix of gradients and solve equality constrained 
reduced problem 

( )
( )

0

0

min ,

.

+

+ =W

q x p

A x p bW

 

 
4.  If  p  turns out to be 0 we have to check whether 0x  could be the full solution.  
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5.   If  p ≠ 0  , we consider p as a search direction and determine   ≤ 1   as the 
maximum value where  

x 1  x 0  p ∈ .  
 

 
6a. If  1α = , we are at a KKT-point for the reduced problem ( 1x ∈Ω!). 
 
6b. Otherwise, new inequality constraints have become active, which we now include  
in  W , and continue as above from 1x . 
 
When this stops, we have a point  *x   and an active set  W ∗  .  
 
This point satisfies 

Gx ∗  d − ∑
i∈W ∗

 i
∗ai  0.
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7a.  Set the Lagrange multipliers for the constraints that are not in  W ∗   to be 0.  
 
If  

 i
∗ ≥ 0

 
for all  i ∈   W ∗ ∩ I  , we have reached a KKT-point for the full solution and that needs 
to be checked (unless we have a convex problem). 
 
 
7b.  However, if some of  these multipliers are negative, we throw the corresponding 
constraints out from W ∗  and solve a new reduced problem. 
 
(It may be shown, Theorems 16.5 and 16.6 in N&W, that this will decrease the 
objective further!). 
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Note: 
 

• In order to start the method, that is to identify a feasible point x 0 ∈  , it may be 
necessary to carry out a Phase 1 problem as in the LP case. 

 
• The Active Set algorithm is listed on p. 472, and numerical aspects are given on 

pp. 477 –  480.  
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(Copied from Ed. 1. See p.462, 2nd Ed. ) 
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Example 16.3: 
 

( )
2

2
1 2

1 2

1 2

1 2

1

2

5min 1
2

2 2 0,
2 6 0,
2 2 0,

0,
0.

x x x

x x
x x
x x

x
x

⎧ ⎫⎪ ⎪⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

− + ≥
− − + ≥
− + + ≥

≥
≥
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THE GRADIENT PROJECTION METHODS 
 
The traditional gradient projection method admits non-linear objective functions as 
long as the constraints are linear: 

min fx ,

ai
′x  bi , i ∈ E,

ai
′x ≥ bi , i ∈ I.

 

 
 
We are in a point  x k ∈    with a corresponding set of active constraints  A k   and the 
(full rank) matrix of gradients  A k  .  
 
A (local) feasible domain is then 

 k  x ; A kx  bk  x k  NA k .
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The gradient in  x k   is 
gk  ∇fx k 

′ ,  
 but in general  x k − gk   will not be in  k   for any   ≠ 0  .  
 
We therefore project the gradient onto  NA k    and consider the 1-D problem 

min


fx k − PNA k gk ,

x k − PNA k gk ∈ .
 

 

PNA k   I − A k
′ A kA k

′ −1 A k  
 

 We find the operator by solving the equality constrained QP-problem 
2min ,

0.
x

g x

Ax

−

=  
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THE NON-LINEAR PROJECTION METHOD 
 

minqx ,

l ≤ x ≤ u.
 

  
Consider the following (and obvious!) non-linear projection operator  
 

( )
,
,
,

i i i

lu i i i ii

i i i

l x l
P x x l x u

u u x

≤⎧
⎪= < <⎨
⎪ ≤⎩

 

We start at  x 0   and compute the continuous broken line path 

xt   P lu x 0 − t∇qx 0 .  
xt  ∈   
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x0-tg0

Plu(x0-tg0)

Ω
x0

x1

x2

l1 h1

l2
l3

h2

h3

 
 

• Let  x c  be the first local minimum along the path.  
• From this point the simplest would be to just compute a new gradient and repeat 

the operation.  
• It is also possible to possible to do an approximate Active Set iteration using the 

already active bounds as the active set, as discussed in N&W p. 480. 


