QUADRATIC PROGRAMMING BASICS

H. E. Krogstad
Spring 2008/Rev. 2010

Quadratic Programming (QP):

- Common form for a lot of problems
- The iterative step in Sequential Quadratic Programming (SQP) methods

THE QP PROBLEM

We are considering problems where the objective function is quadratic,

$$
q(x)=\frac{1}{2} x^{\prime} G x+d^{\prime} x, \quad G \text { symmetric. }
$$

For the non-constrained problem we know

$$
\nabla q(x)^{\prime}=G x+d
$$

$$
x^{*}=-G^{-1} d \text { when } G>0
$$

In general, G will not necessarily be positive definite, not even semi-definite.
The feasibility domain Ω is defined in terms of

- linear equality constraints,

$$
a_{i}^{\prime} x=b_{i}, i \in \mathcal{E},
$$

- linear inequality constraints,

$$
a_{i}^{\prime} x \geq b_{i}, i \in I .
$$

NOTE:

- Ω is convex
- The objective function will be convex if $G \geq 0$.

THE QP PROBLEM WITH EQUALITY CONSTRAINTS ONLY

This case can always be reduced to the following:

$$
\begin{aligned}
& \min q(x) \\
& A x=b,
\end{aligned}
$$

A has full rank $r<n$.

$\Omega=\{x ; A x=b\}=\left\{x_{0}+Z u ; A x_{0}=b, Z\right.$ contains a basis for $\left.N(A), u \in R^{n-r}\right\}$.

1. Solution by Eliminating Unknowns

From the linear system of constraints, express r variables in terms of the remaining $n-r$ unknowns. Insert this into the objective function and solve the unconstrained problem in the remaining $n-r$ variables!

2. Solution by the Null-Space Method

Find an $x_{0} \in \Omega$, and a basis for the null space of A. Insert $x=x_{0}+Z u$:

$$
\begin{gathered}
f(u)=q\left(x_{0}+Z u\right)=\frac{1}{2}\left(x_{0}+Z u\right)^{\prime} G\left(x_{0}+Z u\right)+d^{\prime}\left(x_{0}+Z u\right) \\
=\frac{1}{2} u^{\prime} \tilde{G} u+\tilde{d}^{\prime} u+\text { const. , } \tilde{G}=Z^{\prime} G Z, \quad \tilde{d}=Z^{\prime}\left(G x_{0}+d\right) . \\
\nabla f(u)=\tilde{G} u+\tilde{d}=0 .
\end{gathered}
$$

Three cases, depending on \tilde{G} :

1) A unique solution if the matrix is positive definite
2) Infinitely many solutions if \tilde{G} is singular, as long as it is positive semi-definite and

$$
\tilde{d} \in \mathcal{R}(\tilde{G})
$$

3) No solutions if it is not positive semi-definite (or $\tilde{d} \notin R(\tilde{G})$)

3. Solving the KKT-equations

The Lagrange function is

$$
L(x, \lambda)=\frac{1}{2} x^{\prime} G x+d^{\prime} x-\lambda^{\prime}(b-A x),
$$

and hence,

$$
\begin{aligned}
\nabla_{x} L(x, \lambda)^{\prime} & =G x+d+A^{\prime} \lambda=0, \\
A x & =b .
\end{aligned}
$$

Collected into a system:

$$
\left[\begin{array}{cc}
G & A^{\prime} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
-d \\
b
\end{array}\right]
$$

Lemma 16.1: The coefficient matrix of the system is non-singular if A has full rank and G is positive definite on the null-space of A.

Assume that A has full rank and G is positive definite on the null space of A, that is

$$
(Z u)^{\prime} G(Z u)=u^{\prime} Z '^{\prime} G Z u=u^{\prime} \tilde{G} u>0 \forall u \neq 0 .
$$

Then $\left(x^{*}, \lambda^{*}\right)$ is a unique KKT point and a global minimum
(Follows from the Null-Space Method, which then solves a strictly convex problem).
There are many ways of solving the KKT system in this case. However, if x^{*} is known,

$$
\lambda^{*}=-\left(A A^{\prime}\right)^{-1} A\left(G x^{*}+d\right)
$$

If λ^{*} is known, we reduce the over-determined system

$$
\begin{aligned}
& G x=-\left(d+A^{\prime} \lambda^{*}\right) \\
& A x=b
\end{aligned}
$$

to a (non-singular) system with n unknowns (Simple if $G>0$!)

INEQUALITY CONSTRAINTS

Inequality constraints spoil the elegant theory above completely!
Let us consider the general problem

$$
\begin{gathered}
\min _{x}\left\{\frac{1}{2} x^{\prime} G x+d^{\prime} x\right\}, \\
a_{i}^{\prime} x_{i}-b=0, i \in \mathcal{E}, \\
a_{i}^{\prime} x-b_{i} \geq 0, i \in I .
\end{gathered}
$$

We assume that all equality constraints are linearly independent.
Let as \mathcal{A} or $\mathcal{A}(x)$ denote the active set of constraints in x

The KKT-conditions:

$$
\begin{aligned}
G x+d-\sum_{i \in \mathcal{A}(x)} \lambda_{i} a_{i} & =0, \\
a_{i}^{\prime} x & =b_{i}, \quad i \in \mathcal{A}(x), \\
a_{i}^{\prime} x> & b_{i}, \quad i \in I \backslash \mathcal{A}(x), \\
\lambda_{i} & \geq 0, \quad i \in I \cap \mathcal{A}(x) \\
\lambda_{i}\left(a_{i}^{\prime} x-b_{i}\right) & =0, \quad i \in \mathcal{E} \cup I
\end{aligned}
$$

(Recall that the LICQ conditions are not necessary for linear constraints).
If x^{*} is a KKT-point for the full problem, then x^{*} and a corresponding subset of the Lagrange multipliers is also a KKT-point for the reduced problem:

$$
\begin{aligned}
& \min _{x}\left\{\frac{1}{2} x^{\prime} G x+d^{\prime} x\right\}, \\
& a_{i}^{\prime} x=b_{i}, i \in \mathcal{A}\left(x^{*}\right)
\end{aligned}
$$

- The reduced problem is a QP problem with equality constraints.
- If we have an active set \mathcal{A} and have found a KKT-point x^{*} for the reduced problem, it is easy to check the KKT-conditions for the full problem.
- The next step would be to check the $2^{\text {nd }}$ order conditions: Form the matrix A consisting of the gradients of the active constraints and investigate $Z^{\prime} G Z$, where Z is a basis of $\mathcal{N}(A)$. Unless $G \geq 0$, in which case the KKT-points are global minima!

ACTIVE SET METHODS

1. Assume we are in a point $x_{0} \in \Omega$.
2. We choose a working set \mathcal{W} so that

$$
\mathcal{E} \subset \mathcal{W} \subset \mathcal{A}\left(x_{0}\right) .
$$

3. Let A_{w} be the corresponding matrix of gradients and solve equality constrained reduced problem

$$
\begin{aligned}
& \min q\left(x_{0}+p\right) \\
& A_{\mathrm{w}}\left(x_{0}+p\right)=b_{\mathrm{w}}
\end{aligned}
$$

4. If p turns out to be 0 we have to check whether x_{0} could be the full solution.
5. If $p \neq 0$, we consider p as a search direction and determine $\alpha \leq 1$ as the maximum value where

$$
x_{1}=x_{0}+\alpha p \in \Omega .
$$

6a. If $\alpha=1$, we are at a KKT-point for the reduced problem ($x_{1} \in \Omega$!).

6b. Otherwise, new inequality constraints have become active, which we now include in \mathcal{W}, and continue as above from x_{1}.

When this stops, we have a point x^{\star} and an active set \mathcal{W}^{*}.
This point satisfies

$$
G x^{*}+d-\sum_{i \in \mathcal{W}^{*}} \lambda_{i}^{*} a_{i}=0
$$

7a. Set the Lagrange multipliers for the constraints that are not in \mathcal{W}^{*} to be 0 .
If

$$
\lambda_{i}^{*} \geq 0
$$

for all $i \in \mathcal{W}^{*} \cap \mathcal{I}$, we have reached a KKT-point for the full solution and that needs to be checked (unless we have a convex problem).

7b. However, if some of these multipliers are negative, we throw the corresponding constraints out from \mathcal{W}^{*} and solve a new reduced problem.
(It may be shown, Theorems 16.5 and 16.6 in N\&W, that this will decrease the objective further!).

Note:

- In order to start the method, that is to identify a feasible point $x_{0} \in \Omega$, it may be necessary to carry out a Phase 1 problem as in the LP case.
- The Active Set algorithm is listed on p. 472, and numerical aspects are given on pp. 477 - 480.

```
Algorithm 16.1 (Active-Set Method for Convex QP).
    Compute a feasible starting point \(x_{0}\);
    Set \(\mathcal{W}_{0}\) to be a subset of the active constraints at \(x_{0}\);
    for \(k=0,1,2, \ldots\)
        Solve (16.27) to find \(p_{k}\);
        if \(\quad p_{k}=0\)
            Compute Lagrange multipliers \(\hat{\lambda}_{i}\) that satisfy (16.30),
                        set \(\hat{\mathcal{W}}=\mathcal{W}_{k}\);
            if \(\quad \hat{\lambda}_{i} \geq 0\) for all \(i \in \mathcal{W}_{k} \cap \mathcal{I}\);
                STOP with solution \(x^{*}=x_{k}\);
            else
            Set \(j=\arg \min _{j \in \mathcal{W}_{k} \cap \mathcal{I}} \hat{\lambda}_{j}\);
            \(x_{k+1}=x_{k} ; \mathcal{W}_{k+1} \leftarrow \mathcal{W}_{k} \backslash\{j\} ;\)
    else ( \({ }^{*} p_{k} \neq 0{ }^{*}\) )
            Compute \(\alpha_{k}\) from (16.29);
            \(x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}\);
            if there are blocking constraints
            Obtain \(\mathcal{W}_{k+1}\) by adding one of the blocking
                    constraints to \(\mathcal{W}_{k+1}\);
            else
            \(\mathcal{W}_{k+1} \leftarrow \mathcal{W}_{k} ;\)
    end (for)
```

 (Copied from Ed. 1. See p.462, \(2^{\text {nd }}\) Ed.)

Example 16.3:

$$
\begin{gathered}
\min _{x}\left\{\left(x_{1}-1\right)^{2}+\left(x_{2}-\frac{5}{2}\right)^{2}\right\} \\
x_{1}-2 x_{2}+2 \geq 0 \\
-x_{1}-2 x_{2}+6 \geq 0 \\
-x_{1}+2 x_{2}+2 \geq 0 \\
x_{1} \geq 0 \\
x_{2} \geq 0
\end{gathered}
$$

\longrightarrow Gradient of objective

THE GRADIENT PROJECTION METHODS

The traditional gradient projection method admits non-linear objective functions as long as the constraints are linear:

$$
\begin{gathered}
\min f(x) \\
a_{i}^{\prime} x=b_{i}, i \in \mathcal{E} \\
a_{i}^{\prime} x \geq b_{i}, i \in \mathcal{I}
\end{gathered}
$$

We are in a point $x_{k} \in \Omega$ with a corresponding set of active constraints \mathcal{A}_{k} and the (full rank) matrix of gradients A_{k}.

A (local) feasible domain is then

$$
\Omega_{k}=\left\{x ; A_{k} x=b_{k}\right\}=\left\{x_{k}+\mathcal{N}\left(A_{k}\right)\right\} .
$$

The gradient in x_{k} is

$$
g_{k}=\nabla f\left(x_{k}\right)^{\prime},
$$

but in general $x_{k}-\alpha g_{k}$ will not be in Ω_{k} for any $\alpha \neq 0$.

We therefore project the gradient onto $\mathcal{N}\left(A_{k}\right)$ and consider the 1-D problem

$$
\begin{gathered}
\min _{\alpha} f\left(x_{k}-\alpha P_{\mathcal{N}\left(A_{k}\right)} g_{k}\right), \\
x_{k}-\alpha P_{\mathcal{N}\left(A_{k}\right)} g_{k} \in \Omega \\
P_{\mathcal{N}\left(A_{k}\right)}=I-A_{k}^{\prime}\left(A_{k} A_{k}^{\prime}\right)^{-1} A_{k}
\end{gathered}
$$

We find the operator by solving the equality constrained QP-problem

$$
\begin{gathered}
\min _{x}\|g-x\|^{2} \\
A x=0
\end{gathered}
$$

THE NON-LINEAR PROJECTION METHOD

$$
\begin{gathered}
\min q(x) \\
l \leq x \leq u
\end{gathered}
$$

Consider the following (and obvious!) non-linear projection operator

$$
P_{l u}(x)_{i}=\left\{\begin{array}{cc}
l_{i}, & x_{i} \leq l_{i} \\
x_{i}, & l_{i}<x_{i}<u_{i} \\
u_{i}, & u_{i} \leq x_{i}
\end{array}\right.
$$

We start at X_{0} and compute the continuous broken line path

$$
\begin{gathered}
x(t)=P_{l u}\left(x_{0}-t \nabla q\left(x_{0}\right)\right) . \\
x(t) \in \Omega
\end{gathered}
$$

- Let X_{c} be the first local minimum along the path.
- From this point the simplest would be to just compute a new gradient and repeat the operation.
- It is also possible to possible to do an approximate Active Set iteration using the already active bounds as the active set, as discussed in N\&W p. 480.

