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Quadratic Programming (QP):

e Common form for a lot of problems
e The iterative step in Sequential Quadratic Programming (SQP) methods

THE QP PROBLEM

We are considering problems where the objective function is quadratic,

1
q(x)= Ex'Gx +d'x, G symmetric.

For the non-constrained problem we know
Vq(x)' =Gx+d,
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X"=-G*d when G >0
In general, G will not necessarily be positive definite, not even semi-definite.

The feasibility domain Q is defined in terms of

e linear equality constraints,

ax=h,ieZ,
e linear inequality constraints,

ax>h,iel

NOTE:
e () isconvex

e The objective function will be convex if G>0.
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Contours of the quadratic
objective function
DVEX case)

Inequality
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THE QP PROBLEM WITH EQUALITY CONSTRAINTS ONLY

This case can always be reduced to the following:

ming(x)
AX = Db,
A has full rank r < n.

Q= {x; Ax = b} = {xo + Zu; Ax, =b, Z contains a basis for N(A), ueR"” }

1. Solution by Eliminating Unknowns

From the linear system of constraints, express r variables in terms of the remaining
n—r unknowns. Insert this into the objective function and solve the unconstrained
problem in the remaining n—r variables!
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2. Solution by the Null-Space Method

Find an x, € Q, and a basis for the null space of A. Insert X = X, + Zu:
f(u)=q(x,+Zu)= %(xo +Zu)' G(x, +Zu)+d'(x, + Zu)

:%u'éu+cﬁlﬁu+con5t. , G=2'GZ, d =Z’(Gx0 +d).
Vf(u)=éu+67=0.
Three cases, depending on G:

1) A unique solution if the matrix is positive definite

2) Infinitely many solutions if G is singular, as long as it is positive semi-definite and

3) No solutions if it is not positive semi-definite (or d ¢ R(G))
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3. Solving the KKT-equations

The Lagrange function is
L(x, 4) =%X'GX—I—d'X—l'(b— AX),

and hence,
V,L(x,4)'=Gx+d+A2=0,

AXx =D.
Collected into a system:
G A x | | -d
A 0 A b |

Lemma 16.1: The coefficient matrix of the system is non-singular if A has full rank
and G is positive definite on the null-space of A.
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Assume that A has full rank and G is positive definite on the null space of A, that is
(Zu)'G(Zu)=u'Z'GZu=u'Gu>0Vvu =0
Then (x*,4*) is a unigue KKT point and a global minimum

(Follows from the Null-Space Method, which then solves a strictly convex problem).

There are many ways of solving the KKT system in this case. However, if x* is known,
A*=—(AAY) T A(Gx*+d)
If A* is known, we reduce the over-determined system

Gx=—(d +A'2%)
Ax=Db

to a (non-singular) system with n unknowns (Simple if G > 0!)
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INEQUALITY CONSTRAINTS

Inequality constraints spoil the elegant theory above completely!

Let us consider the general problem

min{%x’GXer’x},
a&—bzaief,
ax—h >0, iel.

We assume that all equality constraints are linearly independent.

Letas A or A(x) denote the active set of constraints in x
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The KKT-conditions:
Gx+d— > Aa =0,

icA(x)
ax=h, ieA(x),
ax>b, ieI\A(x),
4,20, ieInA(x)
A(ax-b)=0, ieEFuUI

(Recall that the LICQ conditions are not necessary for linear constraints).

If x* is a KKT-point for the full problem, then x* and a corresponding subset of the
Lagrange multipliers is also a KKT-point for the reduced problem:

- (1 /
mxln{zx Gx +d x},
ax =bhj, ie A(x*)
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e The reduced problem is a QP problem with equality constraints.

e If we have an active set A and have found a KKT-point x* for the reduced
problem, it is easy to check the KKT-conditions for the full problem.

e The next step would be to check the 2" order conditions: Form the matrix A
consisting of the gradients of the active constraints and investigate Z'GZ, where

Z is abasis of N(A). Unless G >0, in which case the KKT-points are global
minimal!
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ACTIVE SET METHODS

1. Assume we are in a point x, € € .

2. We choose a working set YW so that

EcCc W c A(Xo).

3. Let A, be the corresponding matrix of gradients and solve equality constrained
reduced problem

min q( X%, + p),

A\N(XO_I_ p):bw-

4. If p turns out to be 0 we have to check whether x, could be the full solution.
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5. If p# 0, we consider p as a search direction and determine « <1 as the
maximum value where

X1:X0+apeQ.

6a. If a =1, we are at a KKT-point for the reduced problem (x, € Q21).

6b. Otherwise, new inequality constraints have become active, which we now include
in W, and continue as above from x,.

When this stops, we have a point x* and an active set W* .

This point satisfies

Gx*+d- Y Ajai =0,
ieWw*
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7a. Set the Lagrange multipliers for the constraints that are not in W* to be O.
If
AF >0

forall 1€ W*NZ,we have reached a KKT-point for the full solution and that needs
to be checked (unless we have a convex problem).

7b. However, if some of these multipliers are negative, we throw the corresponding
constraints out from W* and solve a new reduced problem.

(It may be shown, Theorems 16.5 and 16.6 in N&W, that this will decrease the
objective further!).
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Note:

e In order to start the method, that is to identify a feasible point Xo € Q, it may be
necessary to carry out a Phase 1 problem as in the LP case.

e The Active Set algorithm is listed on p. 472, and numerical aspects are given on
pp. 477 — 480.
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Algorithm 16.1 (Active-Set Method for Convex QP).
Compute a feasible starting point xo;
Set W, to be a subset of the active constraints at xo;
for k=0,1,2,...
Solve (16.27) to find py;

if Pk = 0 '
Compute Lagrange multipliers X; that satisfy (16.30),
set W = W
if A; >0foralli e W, NT;
STOP with solution x* = x;;
else
Set j = argmincw,nt i,-;
Xk+1 = X5 Wi < Wi\{j b
else (*pr #0%)
Compute oy from (16.29);
Xk4+1 < Xk + Ok Prs
if there are blocking constraints
Obtain W, by adding one of the blocking
constraints to W13
else
Wi < Wi
end (for)

(Copied from Ed. 1. See p.462, 2" Ed. )
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Example 16.3:

(

mhu<(&;{02+(x2—

.

X, —2X, +22=0,
—X, —2X, +6 >0,
—X, +2X, +22>0,
X, =0,
X, = 0.
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Gradient of objective

- —p  (Gradient of constraint

% "~ Glohal min for g Iterations
| b \ and Working
Sets:
1: A, B
2:B

(4.1)

3D obEw
oo m
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THE GRADIENT PROJECTION METHODS

The traditional gradient projection method admits non-linear objective functions as
long as the constraints are linear:

minf(x),
aﬁx = bi, | € 5,

a€XZ bi, 1 € 7.

We are in a point xx € Q with a corresponding set of active constraints Ax and the
(full rank) matrix of gradients Ay .

A (local) feasible domain is then

Qp = {X CAX = bk} = {Xk +N(Ak)}
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The gradientin Xk is
gk = VE(xi)',

but in general Xk —agk will notbein € forany a +0 .

We therefore project the gradient onto N(Ax) and consider the 1-D problem
”}xinf(xk — P a0 9k),

Xk — aPN(Ak)gk e Q.

Prag = I = AL(AAL) A

We find the operator by solving the equality constrained QP-problem
min|g - x i

Ax=0.
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THE NON-LINEAR PROJECTION METHOD

ming(x),

| < x < u.

Consider the following (and obvious!) non-linear projection operator

)
l., X <I.
P,u(x)i:<xi, l <x <u
§

We start at X0 and compute the continuous broken line path
X(t) = Piu(Xo —tVQa(Xxo)).
X(t) € Q

TMA 4180 Optimeringsteori, var 2008/rev. 2010

21



-0
[
N
Y N
AN AN
DN
AN AN
N N
N N
\ N
\___________\_
\ X
\
/
/
Zz
| 2

o Let Xc be the first local minimum along the path.

e From this point the simplest would be to just compute a new gradient and repeat
the operation.

e |t is also possible to possible to do an approximate Active Set iteration using the
already active bounds as the active set, as discussed in N&W p. 480.
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