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The necessary and su¢ cient conditions for the solution of the spherical trust region
quadratic problem are stated in N&W Theorem 4.1, but its proof is not so simple. Ac-
tually, the problem is a constrained optimization problem, contrary to the unconstrained
problems we have looked at so far.

Below is an attempt to summarize the arguments. Recall that we consider

min
x2Rn

f (p) :

Standing at a point xk we are in the center of a trust region, D, typically a ball with
radius �, where we have a �trustworthy�approximation m to f :

f (xk + p) t m (p) = f (xk) + b0p+
1

2
p0Bp:

It is reasonable to let b = rf (xk), and B be somewhat similar to r2f (xk). The
simpli�ed problem, which is the core of the Trust Region algorithm, is now

min
p2D

m (p) ; (1)

where

m (p) = b0p+
1

2
p0Bp; (2)

D = fp; kpk � �g : (3)

The object function is quadratic and the domain is a ball. The matrix B is assumed to
be symmetric (since skew symmetric parts will not contribute to p0Bp in any case!).

Since m is continuous and D is closed and bounded, we know that there always exist
minima. We also know that

rm (p)0 = b+Bp; (4)

r2m (p) = B; (5)

and the Taylor expansion around a minimum p� (or any �xed point) has the form

m (p� + �) = m (p�) +rm (p�) � + 1
2
�0B�: (6)

Note that we do not require, or need, that B is positive semi-de�nite. This, and the
constraint in Eqn. 3 complicates the solution considerably compared to the standard
unconstrained quadratic model problem.
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1 Necessary and su¢ cient conditions for minima

We �rst observe that there are two possibilities for a global minimum p�. Either p� is in
the interior of D, or it is on the boundary.
If p� is in the interior of D, we clearly need that rm (p�) = 0. Moreover, from the simple
form of m (p), it is necessary and su¢ cient that rm (p�) = 0 and B � 0.
For a p� on the boundary of D we may still have that rm (p�) = 0, and then, from
Eqn. 6, we must have �0B� � 0, for all vectors � pointing into D. However, since
�0B� = (��)0B (��), this must actually be the case for all �-s, and hence B has to be
positive semi-de�nite (No, it can not be negative even for vectors that are tangents to
the boundary! Prove it, or see the argument in the appendix).

We then look at the case when p� is on the boundary and rm (p�)0 = b + Bp� is
di¤erent from 0. In general, all directions within �=2 of the negative gradient are descent
directions, and since the vector p� 2 @D at the same time is an outward normal vector
to the boundary, rm (p�) has to point exactly opposite to p� at a minimum (Make a
simple sketch for R2 if you do not see this!). Thus, p� is a minimum only if rm (p�) is
proportional to �p�, or, equivalently; there is a � > 0 so that

b+Bp� = ��p�: (7)

This may also be written (B + �I) p� = �b. It is even possible to show that that in this
case, B + �I � 0, but the argument in N&W is tricky and reproduced in the Appendix
at the end of the note.

For the converse, let us assume that we have found a � > 0 such that Eqn. ?? holds,
B + �I � 0, and kp�k = �. We need to prove that p� is a global minimum. Consider
the function

m� (p) = m (p) +
�

2
(p0p� p�0p�) ; (8)

which is quadratic, and

rm� (p
�) = b+ (B + �I) p� = 0; (9)

r2m� (p
�) = B + �I � 0: (10)

Thus, according to what we already have proved above, p� is indeed a minimum for
m� (p) in D. But then

m (p�) = m� (p
�) � m� (p) = m (p) +

�

2
(p0p� p�0p�) � m (p) ; (11)

since kpk � kp�k for all p 2 D. Thus, p� is a global minimum for m (p) as well!

In summary, we obtain Thm. 4.1 in N&W in the alternate formulation:

The vector p� is a global minimum of the Trust Region Quadratic Problem if and only
if one of the following conditions hold:

(i) b+Bp� = 0; B � 0; kp�k � �;
(ii) There exists a � > 0 such that (B + �I) p� = �b; B + �I � 0; kp�k = �:

(12)
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2 How to �nd the solution

First of all, we may be lucky and �nd that (i) holds, e.g. B > 0 and kp�k = kB�1 (�b)k �
�. If we are not so lucky, perhaps the equation for p� in (i) cannot be solved, we need
to consider (ii). Then there is an extra parameter in our problem, namely �, which we
later will identify as a Lagrange parameter coming from the inequality constraint (Eqn.
3).

In order to analyze these cases, we recall that B was supposed to be symmetric, so it
has n real eigenvalues, �1 � �2 � � � � � �n, and a corresponding set of normalized,
orthogonal eigenvectors fejgnj=1.
When �j + � 6= 0 for all j, B + �I will be non-singular and we can solve Eqn. ??,

p� = (B + �I)
�1 (�b) : (13)

Show that the solution in Eqn. 13 may be expressed as

p� =
nX
j=1

�
e0j (�b)
�j + �

�
ej (14)

and hence

kp�k2 =
nX
j=1

�
e0j (�b)
�j + �

�2
: (15)

We have to look for a solution �� in the interval [��1;1), since this will ensure that
B + �I � 0. Moreover, it is required that kp��k = �. What happens with kp�k2 when
�!1 ? And, assuming that e01 (�b) 6= 0 , when � approaches ��1 from above? Draw
a sketch of the RHS of Eqn. 15, or look at Fig.4.5 in N&W. Since the right hand side of
Eqn. 15 is a continuous function in the interval (��1;1), there has to be a �� so that
kp�k = �. Finding �� thus amounts to �nd a solution of a non-linear equation. There
is one little snag left in this argument: What happens if B > 0, so that ��1 < 0? Our
solution requires �� > 0. Try to �ll in the details by considering p� for � = 0.

In exceptional cases, e01 (�b) = 0. We then have to solve Eqn. ?? on the subspace
spanned by fe2; � � � ; eng, or, if necessary, choose �� = ��1 and add some contribution
from e1 so that kp�k = � (This is The Hard Case, p. 87 in N&W).

The above covers much of the discussion in Chapter 4, and we shall leave the general
problem here. In practice, it appears to be more reasonable to apply some of the
simpli�ed, but approximate solutions to the quadratic problem, as described in N&W
§4.1.
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3 Appendix: B + �I � 0.
We assume that p� is a global minimum for m (p), kp�k = �, � > 0, and (B + �I) p� =
�b. Following N&W, we consider the following expression for p 2 @D (and note that
p�0p� � p0p = 0):

0 � m (p)�m (p�)� �
2
(p�0p� � p0p)

= b0p+
1

2
p0Bp� b0p� � 1

2
p�0Bp� � �

2
(p�0p� � p0p)

= �p0 (B + �I) p� + 1
2
p0Bp+ p�0 (B + �I) p� � 1

2
p�0Bp� � �

2
(p�0p� � p0p)

= �p0 (B + �I) p� + 1
2
p0 (B + �I) p+

1

2
p�0 (B + �I) p�

=
1

2
(p� p�)0 (B + �I) (p� p�)

The proof will be complete if we can show that x0 (B + �I)x � 0 for all x 2 Rn. The
inequality will hold for all vectors proportional to w = � (p� p�) for some p 2 @D, and
this includes all vectors that are not orthogonal to p�: Assume that x0p� 6= 0. Then

p = p� � 2x
0p�

kxk2
x 2 @D;

and

x =
kxk2

2x0p�
(p� � p) :

Finally, let y0p� = 0. Then y0 (B + �I) y = lim"!0 (y + "p
�)0 (B + �I) (y + "p�). How-

ever, (y + "p�)0 (B + �I) (y + "p�) � 0 for all " 6= 0, so in the limit, y0 (B + �I) y � 0!
May be you see a simpler argument?
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