
Moving the Derivative Inside the Integral

When computing functional derivatives we often need to interchange derivatives and inte-
grals, and usually this works �ne, but in some cases the result will not be what we expect.
Engineers may write �if we may change the order of derivation and integration, then ...�,
but this is not acceptable in a mathematical text. A simple but important counterexample
is discussed at the end of the note.

Let us consider the equation

d

dt

Z b

a

f (x; t) dx =

Z b

a

@f (x; t)

@t
dx: (1)

The left hand side is the derivative of the function

� (t) =

Z b

a

f (x; t) dx; (2)

that is, d�
dt
(t). On the right hand side, the function @f(x;t)

@t
has its usual meaning, and the

right hand side is equal to another function of t, say 	(t). Eq. 1 then states that

�0 (t) = 	 (t) ; (3)

but when is this really true?

Let us consider the derivative of � (t):

�0 (t) = lim
�!0

� (t+ �)� � (t)
�

= lim
�!0

R b
a
f (x; t+ �) dx�

R b
a
f (x; t) dx

�
(4)

= lim
�!0

Z b

a

f (x; t+ �)� f (x; t)
�

dx:

Here it is tempting to move lim�!0 inside the integral since

@f (x; t)

@t
= lim

�!0

�
f (x; t+ �)� f (x; t)

�

�
: (5)

Unfortunately, this is not always valid, even if the limit in Eq. 5 should exist for all
x. However, Lebesgue integration theory has a very powerful criterion called Lebesgue
Dominated Convergence Theorem (LDCT). This tells us that if the limit in Eq. 5 exists
for almost all x, and there is a function H (x) � 0,

R b
a
H (x) dx <1, such that����f (x; t+ �)� f (x; t)�

���� � H (x) ; (6)

then Eq. 1 holds.
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This criterion is very general, and more than we actually need most of the time. Assume
therefore that we deal with �nite intervals and that f and @f=@t are continuous for (x; t) 2
[a; b]� [�; �], say. Finding a suitable H is then trivial. Applying the Secant Formula, and
the �nite maximum of continuous functions on a bounded set, we obtain����f (x; t+ �)� f (x; t)�

���� = ����@f (x; t+ ��)@t

���� � maxx
����@f (x; t+ ��)@t

����
� max

x;t

����@f (x; t)@t

���� =M <1; 0 < � < 1: (7)

Thus, H (x) =M will do, since
R b
a
Mdx <1: This argument actually proves a convenient

theorem stated in Troutman, p. 426:

Theorem A13: If f and @f=@t are continuous for (x; t) 2 [a; b] � [�; �], and [a; b] is
�nite, then the function

� (t) =

Z b

a

f (x; t) dx (8)

is di¤erentiable and

d� (t)

dt
=
d

dt

Z b

a

f (x; t) dx =

Z b

a

@f (x; t)

@t
dx: (9)

(In fact, d�(t)
dt

is even continuous by another application of LDCT).

A somewhat subtile counter-example, well-known in the theory of shock-waves, is the func-
tion

h (x; t) =

�
1 x < t;
0 x > t:

(10)

For t 2 (0; 1),

� (t) =

Z 1

0

h (x; t) dx =

Z t

0

1 � dx = t; (11)

and therefore
d� (t)

dt
=
d

dt

Z 1

0

h (x; t) dx = 1: (12)

On the other hand,
@h (x; t)

@t
= 0 (13)

for all t 6= x, and hence,

	(t) =

Z 1

0

@h (x; t)

@t
dx =

Z t

0

@h (x; t)

@t
dx+

Z 1

t

@h (x; t)

@t
dx = 0: (14)

Thus, we need to be careful when h (x; t) is not continuous!

Let us �nish with a more positive example:

J (y) =

Z 1

0

sin (y (x)) dx; y 2 C[0; 1]: (15)
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Then

J (y + "v) =

Z 1

0

sin (y (x) + "v (x)) dx; (16)

Since both sin (y (x) + "v (x)) and @
@"
sin (y (x) + "v (x)) = cos (y (x) + "v (x)) v (x) are con-

tinuous on, say [0; 1]� [�1; 1], we apply Thm. A13 to conclude that

d

d"

�Z 1

0

sin (y (x) + "v (x)) dx

�����
"=0

(17)

ThmA13
=

Z 1

0

@ sin (y (x) + "v (x)) dx

@"

����
"=0

dx (18)

=

Z 1

0

cos (y (x)) v (x) dx: (19)
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