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1 INTRODUCTION

This note summarizes main points in the numerical analysis of the Conjugate Gradient (CG)
method. Most of the material is also found in N&W, but the note contains the proof of Eq. 5.36,
which is the main convergence result for CG. Some numerical experiments are also included.

2 DERIVATION

The Conjugate Gradient method is derived from the quadratic test problem,

min
x2Rn

� (x) ; (1)

where
� (x) =

1

2
x0Ax� b0x;

and A 2 Rn�n is positive de�nite, A > 0. The method was originally considered to be a direct
method for linear equations, but its favorable properties as an iterative method was soon realized,
and it was later generalized to more general optimization problems.

A key point in the derivation is clever use of the A-scalar product, hx; yiA = x0Ay, and the corre-
sponding norm, kxkA = (x0Ax)

1=2 (see Basic Tools note).

We already know that r� (x)0 = g = Ax� b and r2� = A, so that

x� = arg min
x2Rn

� (x) = A�1b: (2)

The �rst observation is that a set of n A-orthogonal vectors, p0; p1; � � � ; pn�1, that is,

p0iApj = p
0
iApi � �ij ; (3)

is a basis for Rn(recall TMA 4110/15 or a similar course for the terminology!). This property can
be stated in several equivalent ways:

1. The n vectors fpjg are linearly independent.

2. span fp0; p1; � � � ; pn�1g = Rn:

3. Every x 2 Rn can be written uniquely as x =
Pn�1
j=0 �jpj :

Let us for the derivation of the CG method assume that we already have a basis fp0; p1; � � � ; pn�1g,
that we start at x0 = 0, and let p0 = �g0 = b (the start point is easily adjusted later). The
A-orthogonality enables us to write x� =

Pn�1
j=0 �jpj , where

�k =
p0kAx

�

p0kApk
=

p0kb

p0kApk
= � p0kg0

p0kApk
: (4)
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It is interesting to observe that we can compute the coe¢ cients in the expansion for x� without
knowing x� itself!

Below, the subspaces
Bk = span fp0; � � � ; pk�1g ; k = 0 ; � � � ; n� 1; (5)

will play an important role. Observe that

B0 � B1 � � � � � Bn�1 = Rn: (6)

It is a general property of expansions in orthogonal bases that partial sums are the best approxi-
mations in the corresponding subspaces spanned by the basis-vectors. This means that

xk =

k�1X
j=0

�jpj = arg min
y2Bk

ky � x�kA : (7)

As long as we look around for a good approximation to x� in Bk, xk is the best choice (in the
A-norm)! In the present case, xk is also best in another sense, namely, it actually solves the
optimization problem

xk = arg min
y2Bk

� (y) : (8)

Show this yourself by deriving that ky � x�k2A = 2� (y) + b0A�1b.
Equation 8 represents a constrained problem (minimum constrained to Bk). The feasible directions
d from xk will all be vectors in Bk, and since r� (xk) d � 0, and �d 2 Bk if d is,

r� (xk) d = g0kd = 0 for all d 2 Bk: (9)

This could equally well be derived from the famous Projection Theorem, since the error, xk � x�,
is A-orthogonal to Bk:

0 = (xk � x�)0Ad
= (Axk � b)0 d (10)

= g0kd for all d 2 Bk:

The only remaining problem is to actually �nd fpjgn�1j=0 , and the standard way would be to do this
by a Gram-Schmidt procedure, �if we had a set of vectors to start with. If we know p0, p1, � � � ,
pk�1, it is tempting to try

pk = �gk + �k�1pk�1 + ~�k�2pk�2 + � � �+ ~�0p0; (11)

since we already know from above that gk is orthogonal to and hence linearly independent of
fp0; p1; � � � ; pk�1g.
The rather surprising result is now that it su¢ ces to use

pk = �gk + �k�1pk�1; (12)

and then determine �k�1 so that p
0
kApk�1 = 0,

�k�1 =
p0k�1Agk

p0k�1Apk�1
: (13)
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In order to prove that this is really true, we recall the inclusions in Eq. 6 and base the proof
on induction. Starting with any p0 (e.g., p0 = �g0), the next p1 = �g1 + �0p0 can be made A-
orthogonal to p0 by choosing �0 as in Eq. 13. One then needs to verify that fp0; p1; � � � ; pk�1; pkg
is an A-orthogonal set if the vectors fp0; p1; � � � ; pk�1g are A-orthogonal (the induction hypothesis).
We already know that p0kApk�1 = 0, but what about pk and p0; p1; � � � ; pk�2?
Consider pk and pi for i � k � 2:

p0iApk = p
0
iA
�
�gk + �k�1pk�1

�
= �p0iAgk; (14)

since we already know p0iApk�1 = 0 by the induction hypothesis. The trick is now to write

xi+1 = xi + �ipi; (15)

multiply by A and subtract b on both sides so that

gi+1 = gi + �iApi: (16)

In general,

gi 2 Bi+1 � Bi+2 � Bk;
gi+1 2 Bi+2 � Bk;

and then from Eq. 16, Api = (gi+1 � gi) =�i 2 Bk, since �i 6= 0 if we have not reached the solution.
But gk is kk2-orthogonal to Bk, so (Api)

0 gk = 0 for all i � k � 2!
Before stating the algorithm, let us consider the modi�cations when we start at an arbitrary x0 6= 0.
The series expansion for x� will then be

x� = x0 +
n�1X
j=0

�jpj ; (17)

and exactly as above,

�k =
p0kA (x

� � x0)
p0kApk

=
�p0k (Ax0 � b)

p0kApk
= � p0kg0

p0kApk
: (18)

The CG-algorithm may then be written:

Given x = x0

Define p = �g = �Ax+ b
for k = 1 : kmax

� = �p0g=p0Ap
x = x+ �p

g = g + �Ap

� = p0Ag=p0Ap

p = �g + �p
end

The expression for �k may be simpli�ed in several ways, e.g. by utilizing that gradients are kk2-
orthogonal:

�k =
p0kAgk+1
p0kApk

=
g0k+1 (gk+1 � gk) =�k�

�gk + �k�1pk�1
�
(gk+1 � gk) =�k

=
g0k+1gk+1

g0kgk
: (19)

These expressions have turned out to be useful in more general situations.
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3 ERROR ANALYSIS

We know that fxkg is a sequence of best approximations, but how good is it really? It turns out that
there exists a complete theory for the error analysis which involves some interesting mathematics.

Let us start at a general x0 with the �rst search direction p0 = �g0 = � (Ax0 � b). Then, from
Eqns. 16 and 12,

p1 = �g1 + �k�1p0
= � (g0 � �0Ag0)� �k�1g0 2 span fg0; Ag0g : (20)

Continuing in the same way, it is easy to prove that

pk 2 span
n
g0; Ag0; A

2g0; � � � ; Akg0
o
: (21)

Hence, Bk could as well be de�ned as

Bk = span
n
g0; Ag0; A

2g0; � � � ; Ak�1g0
o
: (22)

Similarly,

xk � x0 2 span
n
g0; Ag0; A

2g0; � � � ; Ak�1g0
o
: (23)

The sequence
g0; Ag0; A

2g0; � � � (24)

is called a Krylov Sequence, and fBkg the Krylov Subspaces, after Alexei Nikolaevich Krylov (1863�
1945), famous Russian naval architect and applied mathematician.

The group of algorithms based on Krylov sequences and subspaces (of which CG is the main one)
belongs to the 2000th Century Top Ten Algorithms.

Because of (23), we can write

xk � x0 =
k�1X
j=0


j
�
Ajg0

�
=

0@k�1X
j=0


jA
j

1A g0 = Pk (A) g0; (25)

where Pk (A) is a matrix polynomial of degree k � 1. Furthermore,

xk � x� = xk � x0 + x0 � x�

= P (A) g0 + x0 � x� (26)

= P (A) (Ax0 �Ax�) + x0 � x� (27)

= (P (A)A+ I) (x0 � x�) = Qk (A) (x0 � x�) ;

where Qk is a matrix polynomial of degree k satisfying Qk (0) = 1.

Like we did for the analysis the Steepest Descent method, we observe that A has eigenvalues �1 �
�2 � � � � � �n and a corresponding set of kk2-orthogonal, normalized, eigenvectors, e1; e2; � � � ; en.
Recall that for y =

Pn
j=1 tjej ,

kyk2A = y
0Ay = y0

0@ nX
j=1

�jtjej

1A =

nX
j=1

�jt
2
j : (28)
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Similarly, observing that also Q (A) ej = Q (�j) ej ,

kQ (A) yk2A = y
0Q (A)AQ (A) y =

nX
j=1

Q2 (�j)�jt
2
j : (29)

If we apply Eq. 29 to Eq. 27 with (x0 � x�) =
Pn
j=1 �jej , we obtain

kxk � x�k2A =
nX
j=1

Q2k (�j)�j�
2
j : (30)

This is an exact expression, and since the norm on the left hand side is as small as possible, it will
be impossible to decrease it by choosing a di¤erent polynomial Q (A). Thus, the polynomial Qk is
the optimal solution to the problem

Qk = arg min
deg(Q)=k;
Q(0)=1

0@ nX
j=1

Q2 (�j)�j�
2
j

1A : (31)

The expression is not particularly useful since the optimal Qk will vary for each x�, but we can also
write

kxk � x�k2A � maxj Q2k (�j)
nX
j=1

�j�
2
j = max

j
Q2k (�j) kx0 � x�k

2
A ; (32)

which shows that the relative error of xk is always bound by maxj jQk (�j)j ;

kxk � x�kA
kx0 � x�kA

� max
j
jQk (�j)j : (33)

The quite general error estimate in Eq. 33 has some surprising implications. We are free to put in
any polynomial we like as long as it has degree k and Q (0) = 1. Thus, if A happens to have only k
di¤erent eigenvalues, there exists a k-th order polynomial having those k eigenvalues as zeros and,
by a suitable scaling, we can also obtain Q (0) = 1. Then kxk � x�kA = 0, proving that the method
converges to x� in k iterations!

The following result is somewhat deeper. It considers the case when we have an idea about the
extreme eigenvalues of A, �1 and �n, but not the eigenvalues in between. It is then reasonable to
ask how small the right hand side of Eq. 33 could be, since we clearly have

kxk � x�kA
kx0 � x�kA

� min
Q of order k
Q(0)=1

�
max

�1����n
jQ (�)j

�
: (34)

This turns out to be a classic so-called min-max problem in the approximation of functions, and
the solution is known to be given by

Q� (�) =
Tk

�
2���1��n
�n��1

�
Tk

�
�1+�n
�1��n

� ; (35)

where Tk is the Chebyshev polynomial of degree k. Look up http://mathworld.wolfram.com for
plots and properties of the Chebyshev polynomials (This is the spelling of Chebyshev accepted by
Mathworld. When I was a student, we were told that there are 52 di¤erent spellings of the name
Chebyshev, but Mathworld only cites 40).
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Since max�1�x�1 jTk (x)j = 1, inequality 33 now leads to

kxk � x�kA
kx0 � x�kA

� 1���Tk ��1+�n�1��n

���� ; (36)

and
kxk � x�kA
kx0 � x�kA

� 1���Tk ��+1��1

���� ; (37)

where � = �n=�1 is the condition number of A. The Chebyshev polynomials satisfy a lot of
relations, and one de�nition is simply

Tk (x) =
1

2

��
x+

p
x2 � 1

�k
+
�
x�

p
x2 � 1

�k�
: (38)

With x = (�+ 1) = (�� 1), we obtain

x+
p
x2 � 1 = (

p
�+ 1)

2

�� 1 ; x�
p
x2 � 1 = (

p
�� 1)2

�� 1 ; (39)

and

Tk

�
�+ 1

�� 1

�
=

1

2

0@ (p�+ 1)2
�� 1

!k
+

 
(
p
�� 1)2

�� 1

!k1A
=

1

2

(
p
�+ 1)

2k
+ (
p
�� 1)2k

(
p
�� 1)k (

p
�+ 1)

k
(40)

=
1

2

�p
�+ 1p
�� 1

�k
+
1

2

�p
�� 1p
�+ 1

�k
>
1

2

�p
�+ 1p
�� 1

�k
:

In addition, �p
�� 1p
�+ 1

�k
�!
k!1

0; (41)

when � > 1.

This leads �nally to Eq. 5.36 in N&W, 2nd Ed. (Note: Eq. 5.35 in N&W, 1st Ed. states the result
with the wrong power, the wrong constant, and the wrong de�nition of �!):

kxk � x�kA � 2
�p

�� 1p
�+ 1

�k
kx0 � x�kA : (42)

Figure 1 shows the polynomials Qk for some k-s when �1 = 0:3 and �n = 2. The maximum
deviation for Q10 in the interval [0:3 ; 2] is only 5:6� 10�4, �truly amazing!
Thus, if we have a system of equations and know that the coe¢ cient matrix has eigenvalues in the
interval [0:3 2], the condition number is less or equal to � = 20=3, and after 10 CG-iterations, we
obtain

kx10 � x�kA � 2
�p

�� 1p
�+ 1

�10
kx0 � x�kA � 5:6� 10

�4 kx0 � x�kA ; (43)

regardless the size of the system!

Penalty and barrier methods (N&W, Chapter 17) always lead to Hessians which have a few very
large eigenvalues (actually tending to 1 as the iteration proceeds), whereas the rest are clustered
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Figure 1: The optimal Chebyshev polynomials for the interval [0:3; 2] when k = 2; 5 and 10.

in a �xed range. Theorem 5.5, p. 115, in N&W has some quite important implications for this
case:

kxk+1 � x�kA �
�
�n�k � �1
�n�k + �1

�
kx0 � x�kA : (44)

The bound is thus independent of the size of �n�k+1; � � � ; �n. It is easy to derive the bound from 33
by constructing a (k + 1)-th order polynomial with zeros at (�1 + �n�k) =2, �n�k+1; � � � ; �n, when
�n�k+1; � � � ; �n are all di¤erent (try it!). We recognize (44) as similar to the Steepest Descent
error bound for a matrix with extreme eigenvalues �1 and �n�k, and this is a key observation: By
restarting the CG method every k + 1 iterations we obtain a convergence rate similar to the SD
method, but now with a greatly reduced condition number (counting k CG steps as one iteration).

The convergence behavior with several clustered groups of eigenvalues is illustrated on p. 116-117
in N&W.

Another good reference to the Conjugate Gradient method is the book of G. H. Golub and C. E.
van Loan: Matrix Computations, Johns Hopkins University Press (An excellent general reference
book in numerical linear algebra!).

4 SOME NUMERICAL EXPERIMENTS

It is easy to experiment with the CG-method using Matlab. In the following code we �rst generate
a positive de�nite matrix R0R, and then the matrix A = (R0R)npot. The power npot steers the
eigenvalue distribution and hence the condition number (Consider the change in the eigenvalues of
A when npot varies).

ndim = 100;

R = randn(ndim);

for npot = .1:.4:2

A = (R�*R)^npot;

lamb = eig(A); kappa= max(lamb)/min(lamb);

xsol = rand(ndim,1); b = A*xsol;
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Figure 2: Well-conditioned matrix. Fast convergence.

Norm2 = sqrt(xsol�*xsol); NormA = sqrt(xsol�*A*xsol);

x = zeros(size(b)); g = Ax-b ; p = -g;

for loop = 1:ndim

Ap = A*p; % Only one matrix-vector product!

alfa = -(p�*g)./(p�*Ap);

x = x + alfa*p;

g = g + alfa*Ap; % g = A*x-b;

beta = (g�*Ap)./ (p�*Ap);

p = -g + beta*p;

err2(loop) = sqrt((x-xsol)�*(x-xsol))/Norm2;

errA(loop) = sqrt((x-xsol)�*A*(x-xsol))/NormA;

end;

subplot(1,2,1); plot(lamb,zeros(size(lamb)),�o�);

Tittel = [�Eigenvalues, ndim=� num2str(ndim)];

title(Tittel);

subplot(1,2,2); semilogy(1:ndim, err2,1:ndim,errA);

legend( �2-norm� , �A-norm� );

xlabel(�Iteration number�); ylabel(�Error�)

Tittel = [�npot= � num2str(npot) �

�kappa=�,num2str(kappa)];

title(Tittel);

pause

end

Figures 2 �4 shows some results from the simulations.
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Figure 3: Medium conditioned matrix.
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Figure 4: Ill-conditioned matrix. The convergence is very slow, and rounding errors distroy the
accuracy severely.
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4.1 Exercise

(a) Implement and plot the error bound in Eq. 42 in the Matlab code. How does this compare
with the actual decrease of the error? (N&W say "This bound often gives a large overestimate" Is
this true?).

(b) Modify the matrix A (say, A 2 R100�100) so that it has m (say, m = 5 �10) large eigenvalues
by adding a rank-m matrix LL0, A = (R0R)npot+�LL0; �� 1. Here L is n�m and consists of m
random column vectors. Test the performance of the CG-method. Is a SD restart every k iteration
really necessary?
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