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This informal note gives a summary of variational calculus for functions with norms and a very
small introduction to the variational formulations of the equations in classical mechanics. Some
background in linear analysis may be helpful.

1 Local Extrema

In order to de�ne a local extremum it is �rst of all necessary to de�ne what we mean by local. For
vectors this is expressed by the distance between the vectors, say jx� yj. Recall that function
f (x) de�ned on a domain D has a local minimum at x0 if there is a � > 0 such that f (x0) � f (x)
for all x such that fx 2 D ; jx� x0j < �g.
The distance measure for functions are the function norms. You should consult a linear analysis
textbook if this is completely new to you. We have often been considering functions y 2 C [a; b]
or C1 [a; b], and the norms here are the so-called maximum norms

kykC[0;1] = max
x2[a;b]

jy (x)j ;

kykC1[0;1] = max
x2[a;b]

jy (x)j+ max
x2[a;b]

��y0 (x)�� : (1)

For the last case there are other choices as well.

In the literature (and below!) you will often meet the short notation kyk1 for maxx2[a;b] jy (x)j.
Let us de�ne a �-ball centred at y0 as

B (y0; �) = fy ; ky � y0k < �g : (2)

Consider a functional J (y) de�ned for y 2 D � C1 [a; b], say. The functional J has a local
minimum at y0 if there is a � > 0 such that

J (y0) � J (y) for all y 2 B (y0; �) \ D: (3)

Local maxima are de�ned similarly.

2 Di¤erentiable Functionals and the Fréchet Derivative

A collection D of functions is called a linear space if for all y1; y2 2 D, also ay1 + by2 2 D for all
a; b 2 R. A functional L is linear if it is de�ned on a linear space and

L (ay1 + by2) = aL (y1) + bL (y2) ; for all y1; y2 2 D; a; b 2 R:
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Most of the linear functionals we encounter are also continuous. In general, a functional J is
continuous at z if

jJ (y)� J (z)j �!
ky�zk!0

0: (4)

For a linear functional, continuity (for all y 2 D) turns out to be equivalent to the existence of
an inequality

jL (y)j � kLk � kyk ; (5)

where the number kLk is de�ned as kLk = supkyk�1 jL (y)j. Try to prove that kLk de�ned in this
way is also the smallest number that can be used in (5). The notation suggests what happens to
be the case, namely that kLk is a norm on the linear space of linear functionals.

In most cases we have met, the Gâteaux derivative may be written as a linear and continuous
functional, �J (y0; v) = Ly0 (v).

Example: Let

J (y) =
1

2

Z b

a
y2 (x) dx; y 2 C [a; b] ; a; b �nite. (6)

Then

�J (y0; v) =

Z b

a
y0 (x) v (x) dx: (7)

But the integral is linear, so that Ly0 (v), de�ned for all v 2 C [a; b] by

Ly0 (v) =

Z b

a
y0 (x) v (x) dx; (8)

will be linear as well. Moreover,

jLy0 (v)j �
Z b

a
jy0 (x) v (x)j dx �

Z b

a
jy0 (x)j dx � max

x2[a;b]
jv (x)j =

Z b

a
jy0 (x)j dx � kvk1 : (9)

Thus, it is obvious that kLy0k �
R b
a jy0 (x)j dx < 1, since y0 is a continuous and hence bounded

function. In this case it is actually possible to prove that kLy0k =
R b
a jy0 (x)j dx.

De�nition: The functional J is di¤erentiable at y if it is possible to write

J (y + v) = J (y) + Ly (v) + o (kvk) ; (10)

where Ly is linear and continuous.

Recall that the notation o (kvk) means

o (kvk)
kvk �!

kvk!0
0: (11)

Of course, in this case also �J (y; v) = Ly (v) (Prove it yourself!). The linear functional Ly is
called the Fréchet derivative of J at y. Note that we require that

J (y + v)� J (y)� Ly (v)
kvk �!

kvk!0
0 (12)

for the Fréchet derivative to exist, whereas the Gâteaux derivative does not even need norms.
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The Gâteaux derivative is analogous to the directional derivative, and the Fréchet derivative is
analogous to the gradient.

Comment: For functions the existence of all directional derivatives at a point does not imply
that the function is di¤erentiable in the point: Take a look at the function de�ned on R2 in polar
coordinates as f (x) = r cos (3�). All directional derivatives exist at the origin (check it!), but
it is impossible to construct a tangent plane there. The situation is similar for the Gâteaux and
Fréchet derivatives.

3 Functionals of Vector Functions

Let us consider a vector of functions,

y (x) =

0B@ y1 (x)
...

yn (x)

1CA (13)

for yi 2 C [a; b], say. Such a collection of vector functions will be a linear space with a norm,
de�ned, e.g. as kyk = maxj kyjk1, or kyk =

Pn
j=1maxj kyjk1.

The de�nition of functionals on vector functions does not cause any particular di¢ culties, and
the Gâteaux derivative of functionals acting on vector functions is de�ned exactly as before.

Consider then a di¤erentiable functional J (y), where �J (y;v) = Ly (v). Because of the linearity
of Ly, we may split the action of Ly on v into a sum,

Ly (v) =
nX
j=1

Ly

0BBBBBB@

26666664
0
...
vj
...
0

37777775

1CCCCCCA =
nX
j=1

Lj (vj) : (14)

Similar to regular functions, it is tempting to write

rJ (y) = (L1; L2; � � � ; Ln) ; (15)

and hence,
�J (y;v) = Ly (v) = rJ (y)v: (16)

Let us consider the Standard functional in this setting,

F (y) =

Z b

a
f
�
x;y (x) ;y0 (x)

�
dx; (17)

where f now is a function of 1 + 2n arguments. We assume that f is as smooth as necessary, at
least di¤erentiable with continuous derivatives in the last 2n arguments.

3



By means of partial derivatives and partial integration, we obtain, exactly as before,

�F (y;v) =

Z b

a

df (x;y (x) + "v (x) ;y0 (x) + "v0 (x))

d"

����
"=0

dx

=

Z b

a

8<:
nX
j=1

@f

@yj
vj +

nX
j=1

@f

@y0j
v0j

9=; dx (18)

=

24 nX
j=1

@f

@y0j

�
x;y;y0

�
vj (x)

35b
a

+

Z b

a

8<:
nX
j=1

 
@f

@yj
� d

dx

@f

@y0j

!
vj

9=; dx (19)

In order for �F (y;v) to be 0, it is su¢ cient to �nd a solution to the n coupled Euler equations,

@f

@yj

�
x;y;y0

�
� d

dx

@f

@y0j

�
x;y;y0

�
= 0 ; j = 1; � � � ; n; (20)

and the corresponding boundary conditions,24 nX
j=1

@f

@y0j

�
x;y;y0

�
vj (x)

35b
a

= 0: (21)

Also in this case, if the endpoints for all y (x) are �xed, then v (a) = v (b) = 0, and the boundary
term vanishes. In other situations, we need to impose natural boundary conditions.

In the following it is convenient to use the short-hand notation

@f

@y

�
x;y;y0

�
� d

dx

@f

@y0
�
x;y;y0

�
= 0 (22)

for all n equations in (20).

4 Variational Principles in Mechanics

Classical mechanics is a very old and important application of variational calculus, but the �eld
is far from "old-fashioned"! Deriving the equations of motion for high-speed robots, aircraft
or satellites would be impossible without variational formulations, and Troutman (Chapter 8)
contains much more material than we are able to cover here. The most famous textbook on the
topic is probably H. Goldstein: Classical Mechanics, Addison Westley.

You should be warned that what is covered below is just a tiny fraction of the �eld, but it may
perhaps convince you about the strength of the method.

Consider the well-known Newton�s Law for the motion of a point mass under the in�uence of a
time independent external force,

d

dt
(m _x) = F (x) ; ( _x = dx=dt): (23)

Could this equation be the Euler equation of some standard functional, say

d

dt

@L (x; _x)

@ _x
� @L (x; _x)

@x
= 0? (24)
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From the left hand term of Eqn. 23, we should have that

@L

@ _x
= m _x; (25)

or,

L (x; _x) =
1

2
m j _xj2 � V (x) (26)

for some function V of x. This would satisfy the �rst part. In the same way, the second part will
be satis�ed if

F (x) =
@V

@x
=

�
@V

@x1
;
@V

@x2
;
@V

@x3

�
= rV (x) : (27)

This may begin to look familiar, since T = 1
2m j _xj

2 is equal to the kinetic energy of the mass
particle, V (x) is its potential energy, and the force derived from V as F = rV . Thus,

L (x; _x) = T ( _x)� V (x) = 1

2
m j _xj2 � V (x) : (28)

The function L is called the Lagrange function or the Lagrangian in mechanics, and the corre-
sponding functional,

L (x) =
Z b

a
L (x (t) ; _x (t)) dt (29)

is called the action integral.

It turns out that this situation is quite general. The Euler equations of the action integral with
L = T � V are the equations of motion for the mechanical system. The solution to the Euler
equations, along with the appropriate boundary conditions, de�nes a stationary point ( �L (x;v) =
0 ) for the action integral. However, L is in general not convex, which means that we can not
guarantee this is a minimum.

Constraints on the motion are a problem in the formulation above. The motion is often restricted
to move on a surface, say h (x) = 0. We met this problem before, and recall that constraints as
this one de�ne a manifold of feasible points,

S = fx ; hi (x) = 0; i = 1; � � � ;Mg : (30)

The points on S may often be parametrized in terms of a set of new parameters q, varying freely,
so that x = G (q). This is for example true locally around every point where the LICQ holds.
The observation made Hamilton discover a way to remove the constraints from the problem, but
still keeping the same form of the action integral. Since x (t) = G (q (t)), we also have _x = @G

@q _q ,
and we may rewrite the action integral as

~L (q) �= L (G (q)) =
Z b

a
L

�
G (q (t)) ;

@G

@q
(q (t)) _q (t)

�
dt =

Z b

a

~L (q (t) ; _q (t)) dt; (31)

where now q moves freely. This is a standard functional in q, and we may go on and solve the
Euler equations (dropping ~ )

d

dt
L _qi (q (t) ; _q (t))� L _q (q (t) ; _q (t)) = 0 (32)

along with the boundary conditions. The new variables are called generalized coordinates.

The recipe is thus as follows:
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Figure 1: Simple pendulum.

1. Identify the generalized coordinates, q, which may be varied freely, and at the same time
de�ne how the system moves.

2. Express the kinetic (T ) and potential (V ) energies in terms of q and _q.

3. Form L = T � V and solve the Euler equations,

d

dt
L _q (q (t) ; _q (t))� Lq (q (t) ; _q (t)) = 0: (33)

Identify and �t the appropriate boundary conditions.

4. Obtain x (t) from x (t) = G (q (t)).

4.1 Some Examples

4.1.1 Equilibrium

At an equilibrium point, there is no motion and T = 0. The Euler equations become

@L

@qi
=
@V

@qi
= 0 (34)

As expected, the equilibrium points are stationary points of the potential energy.

4.1.2 The Pendulum

Consider a standard mathematical pendulum consisting of a sti¤, weightless arm of length l and
having mass m, as shown in Fig. 1.

The position of the pendulum is completely de�ned by �, which is then the natural choice for a
generalized coordinate. Moreover, x = l sin �; y = �l cos �. It is easy to express the kinetic and
potential energies in terms of �:

T =
1

2
m
�
_x2 + _y2

�
=
ml2

2

�
_�2 cos2 � + _�2 sin2 �

�
=
ml2

2
_�2; (35)

V = mg (l + y) = mgl (1� cos �) : (36)
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Figure 2: A double pendulum.

The Lagrangian is then

L = T � V = ml2

2
_�2 �mgl (1� cos �) ; (37)

and the Euler equation follows immediately:

d

dt
L _� � L� =

d

dt

�
ml2 _�

�
+mgl sin � = 0; (38)

that is,
�� +

g

l
sin � = 0: (39)

You could consider some simple generalizations, like a hanging pendulum which is free to swing
in two directions, a pendulum where the arm is a spring etc. (see also the Web-references below).

4.1.3 The Double Pendulum

Figure 2 shows a double pendulum, for simplicity shown in dimensionless form with equal masses
(=1) and sti¤ arms (=1). We set the acceleration of gravity, g, equal to 1.

The obvious generalized coordinates are �1 and �2 shown in the �gure, and using the suspension
point as the origin, the positions of the masses are given by

x1 = sin �1; y1 = � cos �1;
x2 = sin �1 + sin �2; y2 = � cos �1 � cos �2: (40)

Show �rst that

v21 =
_�21; (41)

v22 =
_�21 +

_�22 + 2
_�1 _�2 cos (�1 � �2) ; (42)

and then,

T = _�21 +
_�22
2
+ _�1 _�2 cos (�1 � �2) ; (43)

V = � cos �1 � (cos �1 + cos �2) : (44)
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Figure 3: An elastic string.

The expression for Lagrangian is therefore

L = T � V = _�21 +
_�22
2
+ _�1 _�2 cos (�1 � �2) + 2 cos �1 + cos �2; (45)

and the equations of motion follows:

d

dt
L _�1 � L�1 =

d

dt

h
2 _�1 + _�2 cos (�1 � �2)

i
� _�1 _�2 sin (�1 � �2) + 2 sin �1

= 2��1 + ��2 cos (�1 � �2) + _�2

�
_�1 � _�2

�
sin (�1 � �2)� _�1 _�2 sin (�1 � �2) + 2 sin �1

(46)

= 2��1 + ��2 cos (�1 � �2) + _�22 sin (�1 � �2) + 2 sin �1 = 0;

and
d

dt
L _�2 � L�2 = 2��2 + ��1 cos (�1 � �2)� _�21 sin (�1 � �2) + sin �2 = 0; (47)

The equations may be restated as a system of four �rst order equations, and are said to show
chaotic motion. More information about the double pendulum and Java applets showing the
motion may be found on the Internet. Check out

� scienceworld.wolfram.com/physics/DoublePendulum.html.

� www.myphysicslab.com/dbl_pendulum.html (many interesting cases and animations!)

� www.maths.tcd.ie/~plynch/SwingingSpring/doublependulum.html (nice applet!)

The equations for the double pendulum are terrible to derive without variational calculus!

4.1.4 The Elastic String

In the �nal example we consider a tight elastic string supported at �xed ends, see Fig. 3. When
the string moves, there is kinetic energy coming from the mass of the string (say � kilos per
meter), and potential energy coming from the stretching.

We consider small excursions and assume that all points on the string move in one plane and
orthogonally to the x-axis. This means that it is possible to write the kinetic energy at any
instant of time as

T =
1

2

Z l

0
�ut (x; t)

2 dx: (48)
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For the potential energy we let the equilibrium (string without motion) de�ne V = 0. The length
of the string at any instant of time is

H =

Z l

0

q
1 + ux (x; t)

2dx; (49)

and assuming linear elasticity and small de�ections (or rather, jux (x; t)j � 1),

V = � (H � l) = �
�Z l

0

�q
1 + ux (x; t)

2 � 1
�
dx

�
� �

2

Z l

0
ux (x; t)

2 dx; (50)

for some constant of elasticity, �.

The action integral is therefore

L (u) =
Z T

0

Z l

0

��
2
ut (x; t)

2 � �
2
ux (x; t)

2
�
dxdt; (51)

and the Gâteaux derivative,

�L (u; v) =
Z T

0

Z l

0
(�utvt � �uxvx) dxdt =

Z T

0

Z l

0
(U1vt + U2vx) dxdt; (52)

where U = (U1; U2) = (�ut;��ux). The trick we used for the soap-�lm equation also works here:

�L (u; v) =
Z T

0

Z l

0
(U1vt + U2vx) dxdt

=

Z T

0

Z l

0

�
@

@t
(U1v) +

@

@x
(U2v)� U1tv � U2xv

�
dxdt

=

Z T

0

Z l

0
fr � (Uv)� (U1t + U2x) vg dxdt (53)

=

I
@R

n � (Uv) ds�
Z T

0

Z l

0
(U1t + U2x) vdxdt

The integral around the boundary of R = [0; T ]� [0; l] vanishes on the x-boundaries since v = 0,
and on the t-boundaries it will also vanish if we choose appropriate boundary conditions. What
is of interest to us is the Euler Equation,

U1t + U2x = 0; (54)

which, as expected, is equal to the wave equation,

�utt � �uxx = 0: (55)

You could try to look at some of the approximations we introduced above and derive more accurate
equations. The classic book The Theory of Sound by Lord Rayleigh contains the derivation of
the fourth order equation for a sti¤ string (which, by a closer look, turns out to be more relevant
for an oscillating iron bar in a prison cell window).
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