Optimisation of Production

(Troutman, pp. 72–74)

- L(t): Inventory (= amount in storage)
- P(t): Production per time unit
- S(t): Sales per time unit

Equation for the inventory (system dynamics):

$$\frac{dL(t)}{dt} = P(t) - S(t) - \alpha L(t).$$

Here, $-\alpha L$ is loss (destruction) at the storage per time unit.

• S(t): Sales prognosis (*Expected* sales)

Optimal inventory (\mathcal{L}) and production (\mathcal{P}) are matching the sales prognosis S,

$$\frac{d\mathcal{L}(t)}{dt} = \mathcal{P}(t) - \mathcal{S}(t) - \alpha \mathcal{L}(t).$$

E.g., if we want $\mathcal{L}(t)$ to be constant, we need a production $\mathcal{P}(t) = \mathcal{S}(t) + \alpha \mathcal{L}(t)$.

At t = 0, the inventory is off the ideal inventory, $L(0) = L_0 \neq \mathcal{L}(0)$.

How do we plan the production P(t) so as to minimize the extra cost of being off the ideal situation?

The Cost Functional

(what we suffer from not being on the ideal track)

- $L(t) \mathcal{L}(t)$: Deviation from optimal inventory
- $P(t) \mathcal{P}(t)$: Deviation from optimal production

Common formulation:

$$C(P) = \int_0^T \left[\beta^2 \left(L(t) - \mathcal{L}(t)\right)^2 + \left(P(t) - \mathcal{P}(t)\right)^2\right] dt$$

This is an Optimal Control problem:

$$\begin{split} \min_{P} C\\ L'(t) &= P(t) - \mathcal{S}(t) - \alpha L(t),\\ L(0) &= L_0. \end{split}$$

- The variable P(t) is the control variable
- We expect the sales prognosis S(t) to be true, and try to adjust the inventory towards the optimal $\mathcal{L}(t)$
- Inventory is forced to follow the system dynamics:

$$\frac{dL(t)}{dt} = P(t) - \mathcal{S}(t) - \alpha L(t), \ L(0) = L_0.$$

We are starting off the ideal curve (which we *think* we know), and want to minimize the cost of getting there.

Observe that P may be expressed as

$$P = L' + \alpha L + \mathcal{S}.$$

Let $y = L(t) - \mathcal{L}(t)$. Then, since

$$L' = P - S - \alpha L,$$

$$\mathcal{L}' = \mathcal{P} - S - \alpha \mathcal{L},$$

we have

$$L' - \mathcal{L}' = P - \mathcal{P} - \alpha \left(L - \mathcal{L} \right),$$

or

$$P - \mathcal{P} = \frac{dy}{dt} + \alpha y.$$

This is inserted into the cost functional:

$$C(y) = \int_0^T \left[\beta^2 y^2 + \left(y' + \alpha y\right)^2\right] dt$$

• $\beta^2 y^2$ is strongly convex and $(z + \alpha y)^2$ is convex

Thus, C is strictly convex.

Solution

The optimal solution is found by solving the Euler equation for C:

$$\frac{d}{dx}f_{y'} - f_y = \frac{d}{dx}\left[2\left(y' + \alpha y\right)\right] - \left[2y\beta^2 + 2\left(y' + \alpha y\right)\alpha\right]$$
$$= 2\left(y'' - \left(\alpha^2 + \beta^2\right)y\right) = 0.$$

with a fixed value at t = 0,

$$y(\mathbf{0}) = y_{\mathbf{0}} = L_{\mathbf{0}} - \mathcal{L}_{\mathbf{0}}.$$

and a natural condition at t = T (we have no particular restriction on y at T):

$$f_{y'}(y(T)) = 2(y'(T) + \alpha y(T)) = 0.$$

With $\gamma^2 = \left(\alpha^2 + \beta^2 \right)$, the problem may now be formulated as

$$y'' - \gamma^2 y = 0,$$

 $y(0) = y_0,$
 $y'(T) + lpha y(T) = 0.$

From the general solution of the Euler equation

$$y(t) = A \exp(\gamma t) + B \exp(-\gamma t),$$

it is easy to find the unique optimal solution

$$y^*(t)) = y_0 \frac{e^{\gamma t} + \rho e^{-\gamma t}}{1 + \rho}, \quad \rho = \frac{\gamma + \alpha}{\gamma - \alpha} e^{2\gamma T}.$$

The minimal value for the functional may also be computed:

$$C(y^*) = y_0^2 \left[\frac{\gamma(\rho - 1)}{\rho + 1} - \alpha \right].$$

Application: The Ice Cream Factory

The factory is planning for the summer. Today, t = 0, is April 19th, and t = 4 is August 19th.

- Sales prognosis: S(t) = 1 + t
- Optimal inventory: $\mathcal{L}(t) = 4$
- The optimal production rate for $\mathcal{L}(t) = 4$ is $\mathcal{P}(t) = \mathcal{S}(t) + \alpha \times 4$.

For a decay rate, $\alpha = 0.1$, and $\beta = 1.5$ in the cost functional, the best production and inventory for various values of L_0 are shown on the plots.

