Optimisation of Production

(Troutman, pp. 72-74)

- $L(t)$: Inventory (= amount in storage)
- $P(t)$: Production per time unit
- $S(t)$: Sales per time unit

Equation for the inventory (system dynamics):

$$
\frac{d L(t)}{d t}=P(t)-S(t)-\alpha L(t)
$$

Here, $-\alpha L$ is loss (destruction) at the storage per time unit.

- $\mathcal{S}(t)$: Sales prognosis (Expected sales)

Optimal inventory (\mathcal{L}) and production (\mathcal{P}) are matching the sales prognosis \mathcal{S},

$$
\frac{d \mathcal{L}(t)}{d t}=\mathcal{P}(t)-\mathcal{S}(t)-\alpha \mathcal{L}(t) .
$$

E.g., if we want $\mathcal{L}(t)$ to be constant, we need a production $\mathcal{P}(t)=\mathcal{S}(t)+\alpha \mathcal{L}(t)$.

At $t=0$, the inventory is off the ideal inventory, $L(0)=$ $L_{0} \neq \mathcal{L}(0)$.

How do we plan the production $P(t)$ so as to minimize the extra cost of being off the ideal situation?

The Cost Functional

(what we suffer from not being on the ideal track)

- $L(t)-\mathcal{L}(t)$: Deviation from optimal inventory
- $P(t)-\mathcal{P}(t)$: Deviation from optimal production

Common formulation:
$C(P)=\int_{0}^{T}\left[\beta^{2}(L(t)-\mathcal{L}(t))^{2}+(P(t)-\mathcal{P}(t))^{2}\right] d t$

This is an Optimal Control problem:

$$
\begin{gathered}
\min _{P} C \\
L^{\prime}(t)=P(t)-\mathcal{S}(t)-\alpha L(t), \\
L(0)=L_{0} .
\end{gathered}
$$

- The variable $P(t)$ is the control variable
- We expect the sales prognosis $\mathcal{S}(t)$ to be true, and try to adjust the inventory towards the optimal $\mathcal{L}(t)$
- Inventory is forced to follow the system dynamics:

$$
\frac{d L(t)}{d t}=P(t)-\mathcal{S}(t)-\alpha L(t), L(0)=L_{0}
$$

We are starting off the ideal curve (which we think we know), and want to minimize the cost of getting there.

Observe that P may be expressed as

$$
P=L^{\prime}+\alpha L+\mathcal{S}
$$

Let $y=L(t)-\mathcal{L}(t)$. Then, since

$$
\begin{aligned}
& L^{\prime}=P-\mathcal{S}-\alpha L \\
& \mathcal{L}^{\prime}=\mathcal{P}-\mathcal{S}-\alpha \mathcal{L}
\end{aligned}
$$

we have

$$
L^{\prime}-\mathcal{L}^{\prime}=P-\mathcal{P}-\alpha(L-\mathcal{L})
$$

or

$$
P-\mathcal{P}=\frac{d y}{d t}+\alpha y
$$

This is inserted into the cost functional:

$$
C(y)=\int_{0}^{T}\left[\beta^{2} y^{2}+\left(y^{\prime}+\alpha y\right)^{2}\right] d t
$$

- $\beta^{2} y^{2}$ is strongly convex and $(z+\alpha y)^{2}$ is convex

Thus, C is strictly convex.

Solution

The optimal solution is found by solving the Euler equation for C :

$$
\begin{aligned}
\frac{d}{d x} f_{y^{\prime}}-f_{y} & =\frac{d}{d x}\left[2\left(y^{\prime}+\alpha y\right)\right]-\left[2 y \beta^{2}+2\left(y^{\prime}+\alpha y\right) \alpha\right] \\
& =2\left(y^{\prime \prime}-\left(\alpha^{2}+\beta^{2}\right) y\right)=0
\end{aligned}
$$

with a fixed value at $t=0$,

$$
y(0)=y_{0}=L_{0}-\mathcal{L}_{0}
$$

and a natural condition at $t=T$ (we have no particular restriction on y at T):

$$
f_{y^{\prime}}(y(T))=2\left(y^{\prime}(T)+\alpha y(T)\right)=0
$$

With $\gamma^{2}=\left(\alpha^{2}+\beta^{2}\right)$, the problem may now be formulated as

$$
\begin{aligned}
y^{\prime \prime}-\gamma^{2} y & =0 \\
y(0) & =y_{0} \\
y^{\prime}(T)+\alpha y(T) & =0
\end{aligned}
$$

From the general solution of the Euler equation

$$
y(t)=A \exp (\gamma t)+B \exp (-\gamma t),
$$

it is easy to find the unique optimal solution

$$
\left.y^{*}(t)\right)=y_{0} \frac{e^{\gamma t}+\rho e^{-\gamma t}}{1+\rho}, \quad \rho=\frac{\gamma+\alpha}{\gamma-\alpha} e^{2 \gamma T} .
$$

The minimal value for the functional may also be computed:

$$
C\left(y^{*}\right)=y_{0}^{2}\left[\frac{\gamma(\rho-1)}{\rho+1}-\alpha\right] .
$$

Application: The Ice Cream Factory

The factory is planning for the summer. Today, $t=0$, is April 19th, and $t=4$ is August 19th.

- Sales prognosis: $\mathcal{S}(t)=1+t$
- Optimal inventory: $\mathcal{L}(t)=4$
- The optimal production rate for $\mathcal{L}(t)=4$ is $\mathcal{P}(t)=$ $\mathcal{S}(t)+\alpha \times 4$.

For a decay rate, $\alpha=0.1$, and $\beta=1.5$ in the cost functional, the best production and inventory for various values of L_{0} are shown on the plots.

