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1 INTRODUCTION

The number of hits on Google on the term inverse problems has now exceeded 1.8 million. Yet,

most of you have hardly met the term in any of the courses you have been through. The field

of inverse problems is definitely a branch of applied mathematics, but deals with situations one

tend to avoid in the traditional courses in mathematics. This includes less pleasant situations

such as equations with no or infinitely many solutions, missing conditions in a problem, linear

equations where the matrix is non-singular in theory, but numerically singular where even

multi-precision arithmetic is of no help. Although Wikipedia gives a reasonable definition of

the field, the Wolfram MathWorld discussion is rather narrow.

The TV game Jeopardy is an example of an everyday inverse problem. If you are given the

answer ”It was in 1905”, your question will depend both on the circumstances and who you

are:

• When did Einstein publish his Theory of Relativity?
• When did Robert Koch get the Nobel Prize in Medicine
• When was my grandmother born?
• When did Norway and Sweden split up from the union?

Readers should have no problems with adding other ”correct” questions. Thus, the information

we are given is incomplete and non-conclusive. Different input leads to the same result and the

”most probable” input depends on the occasion. All this is typical for inverse problems.

The origin of the term inverse problem is simple and mirrors what is called the forward (or

direct) problem. In simple terms, the forward problem is the situation ”given the question, find

the answer”, whereas the inverse problem is ”given the answer, find the question”.

A better way to express this would be to say that solving an inverse problem is to determine

a cause from its effect. In some cases, there is no hope of ever being able to solve the forward

problem in full generality.

Applications of inverse problem techniques abound in medical imaging, seismology, geosciences,

and many other areas of sciences and engineering. It is probably fair to say that the majority

of real world problems are inverse problems.

The French mathematician Jacques Hadamard introduced the term well-posed for a mathemat-

ical problem where

• a solution always exists
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• the solution is unique
• a small change in the initial conditions leads to a small change in the solution

The opposite of a well-posed problem is an ill-posed problem:

• a solution may not exist
• there may be more than one solution
• a small change in the initial conditions leads to a big change in the solution

Inverse problems tend to be ill-posed.

With 1.8 million Internet hits, the need for another note about inverse problems is not that

urgent. However, the note will be tied up with topics we already have been touching in the op-

timization course. On the other hand, the topics are flavoured by this author’s own experience,

and open material from the Internet will be cited freely (but with references where available).

The note is based on a general presentation that has been given to various groups over the

years, but the field is too extensive to be covered in a short talk, and there are major parts of

inverse problem theory that are not covered at all here.

2 FAMOUS INVERSE PROBLEMS

Before we dig into the theory in more details, let us briefly discuss some very famous inverse

problems.

Can you hear the shape of a drum? This question was first posed by the Hungarian

mathematician Mark Kac in 1966. It is a popular phrasing of the mathematical problem of

whether the spectrum of the Laplace operator of a 2d domain (the drumhead!) is sufficient

for determining its shape. The spectrum is here essentially the eigenfrequencies of the drum

head relative to the fundamental frequency. The question raised a lot of interest and was not

resolved before 1992, and then in the negative: There are indeed non-isomorphic plane domains

with the same eigenfrequencies. One example of iso-spectral domains is shown in Fig. 1, and

there are many other examples.

It is interesting that even if you can’t here the shape of the drum, it is claimed that you can

hear the number of holes and the length of the perimeter. The problem is thoroughly discussed

on the Internet, see e.g. Wikipedia and American Mathematical Society’s Web pages.

Computer tomography. The material in the human body has variable penetration to X-

rays. By the exposing a cross section of the body to X-rays and measuring as illustrated on

Fig. 2, one obtains measurements of the decay along straight lines through the body at varying

positions and varying angles.
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Figure 1: Simple examples of drum heads having identical eigenfrequencies (from Wikipedia article).

Figure 2: Typical arrangement of body, X-ray source and detectors for computer tomography (Figure

copied from a presentation by Dr. G. Lauritsch, Univ. of Heidelberg).
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Figure 3: Scanning along a line  defined by  and .

Mathematically, the set up is as follows: We measure the body in a plane, x ∈ R2, with a
variable absorption  per length unit, that is,  =  (x)  x ∈ R2. The decay along a particular
line may thus be expressed as

line = 0 exp

µ
−
Z
line

 (x ()) 

¶
 (1)

The line is parametrized in terms of its distance  from the origin and the angle  defining the

orientation of the line, as shown in Fig. 3. The integral in Eqn. 1 may then be written

R ( ) = ̂ ( ) =

Z ∞

−∞
 ( cos  −  sin   sin  +  cos ) d (2)

where the R stands for the Radon transform, and

→ { cos  −  sin   sin  +  cos }  (3)

is a parametrization of the line. The problem of reconstructing a 2-dimensional function from

integrals along line averaged was first considered by Johann Radon around 1917, and computer

tomography thus involves an inversion of the Radon transform,

 (x) = R−1 (̂ ( ))  (4)

Contrary to the Fourier transform, where the inverse transform is very similar to the forward

transform, the inverse Radon transform is considerably more tricky, and the inversion formula

exists in many different forms, each with their own merits (See Wikipedia article).

If the object happens to be radially symmetric and the scanning lines are parallel (which is

sufficient for a radially symmetric body), the inversion reduces to the solution of what is called

Abel’s Integral Equation,

 () = 2

Z ∞



R ( 0)


p
2 − 2

 (5)
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Figure 4: Inverse scattering: The (unknown) object is illuminated by incident waves, and the properties

of the object are derived from the scattered wave field.

Actually, the Radon transform and its inversion were re-discovered in the sixties by Allen M.

Cormack and Godfrey N Hounsfield, who received the Nobel Prize in medicine for this work in

1979 (not without some controversy). F. Natterer’s book about CT has become a classic.

Inverse scattering. Inverse scattering is a huge and quite inhomogeneous field. The basic

principle consists of a transmitter, emitting some kind of waves, mostly electromagnetic or

acoustic, into a medium that scatters the waves. In general, some of the wave is scattered,

and some refracted through the medium due to a varying wave velocity. The scattered wave

is recorded by one or a set of receivers, a receiver array. The situation is illustrated in Fig. 4.

Depending on the problem, the angle of the incident wave may be varied, and the scattered

waves recorded at many different locations.

A typical situation is often that an incident plane wave hits a small object. The scattered wave

will, at large distances from the object, be about spherical, and reconstructing the shape (or

the material properties) of the object is then based on the asymptotic properties of the so-called

far field solution.

One of the most important and mathematically developed inverse scattering topic is seismic

processing. Here acoustic waves are transmitted (typically a short wave pulse from some kind

of explosive device) into the ground and the scattered acoustic waves are recorded by receivers

located at various places on the surface. The scattering occurs mainly from discontinuities

in the material properties. However, due to varying wave velocity in various rock types, the

received data are severely distorted and require extensive computer processing in order to be

usable. Fig. 5 shows an illustration (See Petty for a full tutorial in the reference list).

Today, seismic processing is used to map the whole world. In addition, acoustic arrays are

capable to spot small events in the earth’s mantle and discriminate between earthquakes and

a nuclear explosions.

Based on the seismic recordings, and only hours after the tragic Sumatran tsunami on December

26, 2004, California Institute of Technology was able to provide the world with estimates of the

sea floor motion at the continental rift causing the tsunami, see Fig. 6.
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Figure 5: Simulated example demonstrating seismic inversion. Top: Model of the ground; lower left:

raw scattered signals; lower right: processed data (Illustration copied from tutorial material prepared

by Dr. R. Petty, see references).

Figure 6: Sea bottom motion causing the Sumatrian tsunami (Graphs obtained from Prof. Bjørn

Gjevik, UiO. Originally published by Caltech).
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Figure 7: Old example of imagery from the Hubble Space Telescope before adding the correction lens.

A: Original HST photo. B: Enlarged section. C: Ground telescope image. D: Digitally enhanced

image ( c°ESA).

Image restoration, With the advent of strong computers, computer image enhancement and

restoration has become feasible for everyone. Soon after the Hubble Space Telescope (HST) was

put into operation, it was discovered that the telescope mirror was seriously malfunctioning.

Images were blurred, and, even if they still were better than those obtained from ground based

telescopes, the quality was far below expectations. Since the telescope was already in space,

there was no immediate way of improving the situation, and this triggered an intense research

in image enhancement techniques. Fig. 7 shows the state of the art in 1990. See the ESA

article in the reference list for further information about this figure.

The most popular model describing blurring of images is to model the process by a spatially

invariant Point Spread Function (PSF), , acting on the ideal image by convolution, that is,

a weighted moving average. If we neglect the image boundaries, this may be written

 (x) =  ∗  (x) =
Z
R2
 (x− y)  (y) y (6)

where  is the ideal and  the blurred image. Contrary to what one would assume, the Fourier

transform,

F (k) =
Z
R2
−kx (x) x (7)
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Figure 8: In system engineering, a linear equation is vizualized in terms of input-filter-output.

and the well-known identity

F () (k) = F () (k)×F () (k)  (8)

is seldom of much help. First of all, F () (k) F () (k) breaks down where the Fourier
transform of  has zeros, an even if that should not be the case, regions where F () is small
will tend to magnify random errors in F (). The term Point Spread Function is reasonable:

An image consisting of a single point represented by a -function at x0, x0 , will be blurred into

x0 ∗  (x) =  (x− x0)  (9)

In astronomy, a remote star may be used as an excellent -function.

3 LINEAR INVERSE PROBLEMS

Before we start, one should note that the form of the answers given below is not necessary the

expressions one would use in practice. In particular, the Singular Value Decomposition (SVD)

is a nice mathematical tool, but not always feasible for very large problems.

3.1 Noise-free problems

The linear, noise-free inverse problem is nothing but the familiar linear equation. Systems

engineering considers a linear equation  =  as a linear filter, where  ∈ R is the input and

 ∈ R the output, or the observations, see Fig. 8. The matrix  is a representation of the

filter, and not so seldom, the filter is only partially known and itself part of the problem.

As long as we are able to test the filter by entering suitable input signals, it is possible to find

 by entering any set of  linearly independent input vectors, e.g. the  standard basis vectors.

The trivial case is of course when we know  and  and may just solve the equation, e.g. by

standard Gaussian elimination. This leads into the following (typical) cases:

•    : There are many different solutions fitting the data

•  =  : There is one unique solution

•    : No solution fulfils the system exactly

Inverse problems are typically under-determined,   , and that is what we consider below,

apart from some cases where  = 
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As discussed in the Least Square-optimization note, the easiest way to analyze what happens is

to apply the Singular Value Decomposition of . We recall that the (full) SVD of an arbitrary

×  matrix  is

 = Σ 0 (10)

where  = [1 2  ] and  = [1 2  ] have orthogonal columns of norm 1 and the

 ×  matrix Σ contains the singular values {} along the first diagonal. Singular values
are non-negative, with  = rank () of them being strictly larger than 0. We assume that the

singular values are ordered as

1 ≥ 2 ≥ · · · ≥   0 (11)

Recall that the first  columns of  are a basis for R () (the range of ) and the last − 

columns of  are a basis for N () (the null-space of ), and the SVD-representation can be
reduced to

 =

X
=1


0


The Moore-Penrose generalized inverse of  is the matrix

+ =

X
=1

1




0
 (12)

In terms of the singular value decomposition, the full solution of the Least Square problem

∗ = arg min
∈R

k−k2 (13)

is

∗ =
X

=1


0



 +

X
=+1

 =

X
=1


0



 + ⊥ (14)

where ⊥ is an arbitrary vector in N ().
Many inverse problems deal with huge matrices. E.g., in image restoration, the number of

unknowns is equal to the number of pixels, and the matrix of the Point Spread Function (in

general varying over the image) will be of dimension equal to the number of pixels squared. As

we mentioned when discussing Least Square problems, determining the rank of such a matrix is

far from trivial. The common situation is that the singular values decrease gradually to 0, and

it is impossible to say where to stop and say this is the rank of . The nice thing about Eqn.

14 is that we can add one term at a time and stop when the solution starts to get unstable.

Small singular values magnify random errors in ,  or  , and destabilize the solution. This is

an therefore a typical ill-conditioned problem, and a characteristic feature of inverse problems.

A linear equation may also be considered as the finite dimensional analogue of an important

class of equations in applied mathematics, namely the Fredholm integral equations. The model

for the image blur in Eqn. 6 is one example of a Fredholm equation. More generally, we may

write

 () =

Z
 ( ) ()  (15)
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where  and  belong to (possibly different) bounded or unbounded sets of real numbers. The -

function is called the kernel of the equation. Typically, the functions  and  will be elements

in Hilbert spaces, H1 and H2, respectively, and the equation then defines a linear operator,
 : H1 → H2,  = . For nice and smooth kernels, the operator  will be compact. This

means that the map of a bounded set by  will be pre-compact (the closure is compact).

Compact operators have a generalized SVD {  }∞=1, so that we may write

 =

∞X
=1

 h i (16)

Moreover, to each distinct singular value  different from 0, there are only finitely many -s

and -s. If only finitely many singular values are different from 0, we say that the operator is

degenerate. Otherwise, if we assume that same ordering as before, i.e. 1 ≥ 2 ≥ · · · , we have
lim
→∞

 = 0

and this is the only accumulation point.

All this makes the Fredholm integral equations with nice kernels a natural extension of the

finite dimensional theory. E.g., the generalized inverse is again of the form

+ =

∞X
=1

h i


 (17)

Unless  happens to be degenerate, solving a Fredholm integral equation will always be ill-

conditioned. Engl et al. give an extensive discussion of this and more general operators between

Hilbert spaces.

Example: The Hilbert matrix system. The so-called Hilbert matrix, , is the Gram-

Schmidt matrix for the linearly independent functions {}∞=0 on the interval [0 1]:

 = {}=1 =

⎡⎢⎢⎢⎣
1 1

2
1
3
· · · 1


1
2

1
3

1
+1

...
...

1


1
+1

· · · 1
2−1

⎤⎥⎥⎥⎦   =
Z 1

0

−1−1 (18)

The matrix is clearly non-singular, but very ill-conditioned: For  = 20, the condition number

is 19× 1019, and the singular values and the solution, when using Matlab to solve 20 = , is

shown in Fig. 9. Matlab has a carefully coded numerics and displays a strong warning against

using the computed solution because of the large condition number. Nevertheless, the solution

using only 10 terms in the SVD-expansion is very reasonable. The direct solution in this case

is useless, and in fact, the actual outcome varies from computer to computer with different real

number representations.

When doing a sequential SVD solution by introducing one term at a time,

() =

X
=1


0



  = 1 · · ·   (19)
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Figure 9: Behaviour of the Hilbert matrix system when  = 20. The left plot shows the singular

values, which reach the machine accuracy around singular value no. 15. The middle plot shows the

exact solution (red) and the solution computed by Matlab (blue). Note the scale on the ordinate axis.

Finally, the exact solution (a simple sine-shaped function) and the SVD-solution using only 10 terms

is shown to the right.
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Figure 10: Norms of residuals and solutions for the sequential SVD solution of the Hilbert system for

 = 40.

it is important to be aware that a small residual is not a useful criterion, as shown in Fig. 10

for the solution of 40 = . Even if the residual is small (equal to the machine accuracy), for

all -s larger than about 13, the solution runs terribly off as  increases.

It is mandatory to get control over this instability, and it is now time for introducing the most

important and new concept for inverse problems, namely regularization.

3.1.1 Regularization based on the SVD

Regularization means to make the solution more regular, which often is the same as more

reasonable. There are different ways of applying regularization depending on the problem. To

truncate the SVD at a suitable point, as we saw above, is a very straightforward way of doing
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Figure 11: Optimally truncated SVD solution found by means of the Picard Plot (left). Exact (red)

and numerical (blue) solution to the right.
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Figure 12: The cosine-bell taper. The tapering zone (described by an adapted cosine function) extends

in this case from 0.7 to 1.3.

a regularization. Since the solution is expressed in terms of an orthogonal series,

∗ =
X

=1

 (20)

where kk = 1, and  = 
0
, it is reasonable to display the absolute value of the Fourier

coefficients, ||, and stop when these are at their smallest. Such a plot is called a Picard plot,
and an example for the Hilbert matrix problem treated above is shown in Fig. 11.

Experience from Fourier theory has showed that cutting the series abruptly is not always the

best. The sharp cut-off generates so-called Gibb’s oscillations near discontinuities of the solution

(look this up in the literature if it is not familiar). The cure is to introduce a tapering function,

which is a function of  starting at the value 1 for  = 1 and then dropping gently to 0 where

we want to have the truncation. A typical taper, the so-called cosine bell,  (0), shown in

Fig. 12.

The truncated solutions may now be written

() =

X
=1



µ




¶

0



 (21)

There is an extensive theory about the performance of various tapers (also called windows) in

signal processing, e.g. how to choose the width of the tapering zone.
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It is sometimes more convenient to express the taper as a function of , tending to 1 when 

gets large and to 0 when  tens to 0 (See the taper derived for the Tikhonov regularization

below).

3.1.2 Tikhonov Regularization

There are many other ways of introducing regularization into an inverse problem. A rather old

idea is to extend the minimization in Eqn. 13 by some penalty term which "punishes" bad

behaviour.

Consider again an under-determined linear problem where  ∈ R×,   , and assume that

we know that the solution should not be that different from 0. The vector 0 is sometimes

called our a priori belief about the outcome. It would then be an idea to modify Eqn. 13 as:

∗ = argmin


©k− k2 +  k− 0k2
ª
 (22)

where the positive constant  determines how much we believe in 0. Note that the two norms

are generally taken in different spaces, so that  also has to take care of physical dimensions.

This approach is called Tikhonov regularization and appears to be introduced by Andrey Niko-

layevich Tikhonov already in the 1940s (In mathematics, Tikhonov is spelled Tychonoff and

famous for his theorem about the product of compact topological spaces).

Problem: Show that the solution of the problem in Eqn. 22 may be written in the alternative

forms

∗ = (0+ )
−1
(0+ 0)

= 0 + (
0+ )

−1
(0−00)

= 0 +

X
=1



2 + 
0 (−0)  (23)

= 0 +

X
=1

2
2 + 

1


0 (−0) 

Observe that Tikhonov regularization introduces the taper

 () =
2

2 + 
 (24)

which dampens singular values less than about O ¡12¢. The function is plotted in Fig. 13.
This regularization has some less convenient properties. If we know that  has a strong peak

and our a priori belief is slightly wrong about its position, this will show up in the solution as

a spurious peak spoiling the quality of the solution. Tikhonov regularization is sometimes used

with 0 = , thus only punishing deviations from .

3.1.3 Smoothing Operators

Regularization is often about punishing irregularities in the solution, and a popular operator

for this purpose is the discrete Laplace operator (
P

=1
2

2
). For a one-dimensional, discrete
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Figure 13: The taper  () for Tikhonov Regularization.

problem, the operator will be the 2 difference, 2, defined from R to R−2 as¡
2

¢
−1 = −−1 + 2 − +1  = 2 · · ·  − 1 (25)

For higher-dimensional data, the operator is defined accordingly.

Let us denote the smoothing operator by . The regularized problem takes the form

∗ = argmin


©k− k2 +  kk2ª  (26)

with the obvious solution

∗ = (0+ 0)−10 (27)

Example: The Hodrick-Prescott Filter. We consider yearly mean temperatures in the

form of time series with a time step of 1 year, and write the measurements as {}, where 

is the measured value at time ,  = 1 · · ·  .
The data in this example have been obtained from freely available climatic temperature data

at the Web-location rimfrost.no.

In a trend analysis,  is expressed as a sum of two parts,

 =  +  (28)

where  is the trend and the remainder,  =  − , is called the residual. An example of a

trend curve and the residuals for the temperatures from Blindern, Oslo, is shown in Fig. 14.

The trend curve is slowly varying, and the residuals spread out evenly around the trend. This

is what we appreciate for a good trend curve.

The trend curve in Fig. 14 is produced by applying an irregularity penalty along with a least

square deviation from the trend. We are looking for the trend  in the same points as we have

the data. Since the trend curve should be centred in the middle of the data, it is first of all

reasonable to require that
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Figure 14: Data, trend and residuals for yearly mean temperatures from Blindern, Oslo. The trend

curve is computed by means of the Hodrick-Prescott filter.
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X
=1

( − )
2

(29)

is small, but not so small that the curve becomes too irregular. Let 2 be the operation in

Eqn. 25. If
−1X
=2

¡
2

¢2

= 0 (30)

all points of  lie on a straight line since then (2 ) = 0 for  = 2 · · ·  − 1. It is therefore
reasonable to consider the sum of the terms in Eqns. 29 and 30,

 ( ) =

X
=1

( − )
2
+ 

−2X
=2

¡
2

¢2

 (31)

and solve

 = argmin


 ( )  (32)

The trend curves range from the trivial  =  for  = 0, to the mean square linear regression

when →∞. Apart from the limiting cases, the solution of the linear least square problem in
Eqn. 31 cannot be carried out analytically for  of some size. However, no numerical problems

has been experienced, even if the dimension of the sparse linear system is equal to the number

of data points.

Data and trend curves for varying values of  are shown in Fig. 15. It is not obvious to say

what is the best.

These trend curves are called Hodrick-Prescott curves, and the algorithm is called the Hodrick-

Prescott filter, named after the people who introduced the method to the economists in the

1990s (E. C. Prescott got the Nobel Prize in economics for 2004 together with the Norwegian

Finn Kydland). Nevertheless, the method is much older, dating back at least to the 1920s.

3.2 Problems containing noise

Real measurements are always suffering from various kinds of noise. The noise is unavoidable

and may be added to the signal, multiplied to the signal, or interfering in some other and more

complicated way. The analysis of random noise requires elements of stochastic signal analysis

which will not be covered in detail here.

The standard and very common situation is to have some additive noise in the data, as il-

lustrated in Fig. 16. A common source of noise is introduced by the digitalization of analog

signals. The noise may come from time or space digitization, as well as from the discretization

of the data values (called quatization noise). A CD or a digital video recording (DVD) are good

examples.

Let us consider the effect of the noise on the SVD-solution ∗ =
P

=1

0

. Using the basis

16



1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

2

4

6

8

10
T

em
pe

ra
tu

re
, 

o C
B lindern , Oslo, =100

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

2

4

6

8

10

T
em

pe
ra

tu
re

, 
o C

=1500

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

2

4

6

8

10

T
em

pe
ra

tu
re

, 
o C

Year

=100000

Figure 15: Examples of trend curves for varying values of  (= ) in the Hodrick-Prescott filter.
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Figure 16: System with additive noise in the result
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Figure 17: The Wiener filter puts the data through an additional filter which tries to reproduce the

input as closely as possible in an averaged sense.

vectors in  and  , we may write

 =

X
=1

 (33)

 =

X
=1

 (34)

Since

+  =

X
=1

( + ) (35)

and since the -s are orthogonal, 
0
 = , this gives

∗ =
X

=1

0 (+ )


 =

X
=1

µ
 +




¶
 (36)

Noise on the components where  is small is therefore particularly serious, although what

actually matters is the relative size of  compared to .

This introduces a connection between the regularization and the noise level: It is necessary to

choose the regularization, say the cut-off in the SVD expansion in Eqn. 36, before the noise

starts to dominate.

3.3 Choosing the Right Regularization

Since the amount of necessary regularization depends on the noise level, inverse problem theory

has developed many rules which, for a given noise level, determine the amount of regularization.

In the following, we discuss some of the most popular methods.

3.3.1 The Wiener Filter

The Wiener filter, introduced by Norbert Wiener in the 1940s, is based the idea of continuing

the graph in Fig.16, as shown in Fig. 17. The idea is to choose the filter  ∗ so that  ∗ () is
close to  in an average optimal way,

 ∗ = argmin

k (+ )− k  (37)

where kk is some norm that averages over the signals we have at our disposal. We shall here

only derive the filter for a very simple case, where we again utilize the SVD of the -matrix,

 = Σ 0.
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Assume that the collection (ensemble) of all input signals are multivariate stochastic variables

in the form

 =

X
=1

 (38)

where {} are independent stochastic variables with zero mean, E = 0, (just for convenience)

and variance Var () = 2 . Similarly, we assume that the noise  is written

 =

X
=1

 (39)

with E = 0 and Var
¡

¢
= 2 . Typically,  is assumed to be constant, corresponding to 

being white noise. Thus, we have

E kk2 =

X
=1

Var () =

X
=1

2  (40)

E kk2 =

X
=1

2  (41)

The special kk-norm averaging over the possible signals is now defined as

kk
∆
=

q
E kk2 (42)

From the SVD of  we obtain

+  =

X
=1

¡
 + 

¢
 (43)

Since we consider the Wiener filter to be some kind of generalized inverse, we look for an

optimum filter of the form

 = Σ 0 (44)

where (Σ ) = . Thus,

 (+ )−  =

X
=1

{ ( + )− }  −
X

=+1

 (45)

The last term in the sum, belonging to N (), is beyond our control. For the first term we have

E

°°°°°
X
=1

{ ( + )− } 
°°°°°
2

=

X
=1

£
( − 1)2 2 + 2 

2


¤
 (46)

Since each term in the sum is independent of all the others, we can minimize the sum term by

term. We leave to the reader to show that the optimum values of  are

 =


2


2
2
 + 2

  = 1 · · ·  (47)
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Applying the optimal Wiener filter, we thus obtain

 =

X
=1


2


2
2
 + 2

¡
0
¢
 (48)

The coefficients reduce to the standard generalized inverse when  = 0, and we see the simi-

larity with the Tikhonov regularization taper when {} and {} are constant.
The Wiener filter has for a long time been an important tool in optimal signal processing.

Look up the Wikipedia article about the Wiener filter for other formulations depending on the

system.

3.3.2 Morozov’s Discrepancy Principle

If we know that our noisy data vector  deviates from the exact data vector  at most with an

amount 

k − k ≤  (49)

we have to accept all solutions  where

k− k ≤  (50)

However, not all these -s are equally reasonable. As we saw above for the ill-conditioned

Hilbert matrix problem,  can be quite large even if the residual is very small (In an infinite-

dimensional Hilbert space, the set of -vectors defined by the condition in Eqn. 50 is even

unbounded, unless R () is closed).
Assume that we have, as in Tikhonov regularization, a method with parameter  determining

the amount of regularization. The idea of Morozov’s Discrepancy Principle is to choose the

largest possible (i.e. the most cautious)  where  satisfies

k − k ≤  (51)

Recall the solution of the Tikhonov regularization problem with an observation  and an a

priori assumption 0:

 = 0 +

X
=1

2
2 + 

1


0 ( −0)  (52)

Let us further assume that

k0 − k   (53)

so that 0 is not an acceptable solution from the start. It is obvious that the last term in Eqn.

52 tends to 0 when  → ∞, so that the inequality 51 will be violated for large enough -s.

However, it is not obvious that there exists a  at all so that  satisfies 51. This will definitely

not hold if the distance from R () to  is larger than , that is,

min
∈R

k − k   (54)
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Figure 18: Definition of the L-curve.

We leave to the reader to show, using the expression in Eqn. 52, that

k − k −→
→0

0 (55)

if  ∈ R () (First show this when 0 = 0. Then prove that the part in Eqn. 52 involving

0 tends to 0 when multiplied by ). From this, it is easy to see that there will be acceptable

solutions as long as the distance between R () and  is a little less than . In this case,

Morozov’s Discrepancy Principle suggests that the proper regularization parameter is

 = arg max
k−k≤

 (56)

3.3.3 The L-curve

The L-curve as a general method for selecting the best regularization has been introduced

by Per Chr. Hansen, DTU. The idea is simple and again illustrated by means of Tikhonov

regularization in the form of an error term,

k − k  (57)

and a penalty term

kk  (58)

The L-curve is simply the trace of {log (k − k)  log (kk)}when  varies, and the optimal
value is found where the curve has its largest curvature. An example where the L-curve works

extremely well has been copied from P.C. Hansen’s book. The equation is the Fredholm integral

equation Z 2

−2
 ( ) ()  =  ()  (59)

with the kernel

 ( ) = (cos + cos )
sin2 ( (sin + sin ))

2 (sin + sin )
2

 (60)
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Figure 19: The L-curve to the left with 3 values of  indicated. The optimal point is very well defined

in this case.

and a right hand side  computed from the prescribed solution

 () = 1 exp

Ã
−(− 1)

2

21

!
+ 2 exp

Ã
−(− 2)

2

22

!
(61)

Tikhonov Regularization is carried out with penalty for a large solution norm,

 = argmin
©k− k2 +  kk2ª  (62)

and the result is shown in Fig. 19.

Unfortunately, the L-curve does not always work that well. In fact, it appears to be of little

value for the Hodrick-Prescott filter. Per Chr. Hansen’s home page (see the references) contains

several notes related to the L-curve and many other interesting inverse problems.

4 ITERATIVE METHODS

Iterative methods find the solution in a step-wise manner, and in traditional courses in mathe-

matics, the focus is on convergence. The iteration should converge towards a solution, preferably

independent of the starting point. The same methods may also be used for inverse problems,

but in this case, one does not care about the convergence of the series. It is even sometimes

used where it is easy to see that the will method finally diverge.

The trick is to start the iteration, and then stop at the right step, somewhat similar to computing

with divergent asymptotic series.

If we return to  =  for huge matrices, such matrices are often sparse (= containing mostly

0-s), and whereas it may be quite fast to carry out the matrix-vector product  for an arbitrary

, carrying out an -factorization will be slow or even practically impossible if the storage of

the full matrices in core is impossible. This situation calls for some iterative solution, e.g. the

Conjugate Gradient (CG) method when   0. The Conjugate Gradient method is discussed

as an iterative method for the normal equations in Engl et al., Ch. 7.

For a quadratic system,  =  where   0, the simplest iteration is

+1 =  +  (−)  (63)
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where the relaxation parameter, , is chosen so that

k − k  1 (64)

Equation 63 is recognized as the fix-point iteration for

 =  () = +  (−)  (65)

and Eqn. 64 as a sufficient condition for

sup


k ()−  ()k
k− k  1 (66)

(Look up fix-point iteration on the Web or in a textbook if this is unfamiliar).

Problem: Prove that with   0 and 0 = 0,

 =

−1X
=0

( − )

()  (67)

and k −−1k −→
→∞

0 when k − k  1 (Hint: −1 = [ − ( − )]
−1

).

The corresponding iteration for the normal equations 0 = 0 has the form

+1 =  + 0 (−)  (68)

and for  = 1, this iteration is called Landweber Iteration (Engl et al., Ch. 6).

The iteration defined by Eqn. 63 is used in many different contexts, also for nonlinear problems

where an analytical analysis is out of reach. When data and input are of the same dimension,

the problem at hand will be to solve a nonlinear equation, which we write, in order to avoid

confusion with the linear case,

 () =  (69)

Exactly as above, it is now reasonable to try

+1 =  +  (− ())  (70)

This type of iteration is particularly attractive for large problems when the forward problem,

→ (), is relatively easy to solve, as will be the case for convolution operators where we can

utilize the Fast Fourier Transform. The method is popular, sometimes said to be ”so popular

that it is re-invented twice a year” and in many application areas known under the name of the

Van Cittert Deconvolution Method.

In electromagnetic, electron, and NMR spectroscopy, the spectrum (as a function of frequency)

is highly irregular with typically high narrow (-function like) peaks. However, since the in-

strument is not perfect, the peaks are "blurred", and will potentially hide smaller peaks that

are neighbours to large peaks. The issue it then to ”de-blur” or deconvolve the data and obtain

a more accurate result with more details.
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The example in Fig. 20 illustrates this for simulated data. The blurring is a gaussian moving

average, and the ”measurement”, , shown in the top plot, is simply the convolution between

the gaussian,  (), and the ideal data,  (),

 () =  ∗ () =
Z
0
 ( 0)  ( −  0)  0 (71)

In the middle, we have the carried out 2000 iterations according to the formula

+1 () = max [0  +  ( ()−  ∗)] (72)

with  = 1. The iteration breaks down for  a little larger than 2. Also, if we know that the

exact function should be nonnegative, we may enforce that during the iterations. Compared

to the original measurements, the deconvolution has recovered the two small peaks around 0.1,

the broad peak at 0.2 and also the remaining narrow peaks. Around the most prominent peak

at 0.44, the solution has however become quite irregular. This kind of ”over-compensation” is

common for Van Cittert deconvolution and related to the Gibbs oscillations in Fourier theory.

In conclusion, the de-blurring has only been partly successful.

It should be added that a Gaussian blur is a simple form of blurring, being monotone in the

sense that if the original function increases, then so does the blurred function. Van Cittert

deconvolution probably works best under such circumstances.

Here we have also assumed that the blurring function is known. There are, however, special

techniques for deriving the form of the blurring function (Point Spread Function) along with

the deconvolution, called blind deconvolution, which we not go into here.

In the following example we show the Van Cittert method applied to the most famous pic-

ture in image processing, Lena. The lady is Lena Söderberg (born Sjöblom) from Sweden

and the picture is from Playboy, November 1972. Interestingly enough, and perhaps typi-

cal for the pre-internet period, Lena Söderberg was not aware that her picture was exten-

sively used in image processing research before 1988! The history of the picture is found on

http://ndevilla.free.fr/lena/.

The 255 gray level picture here has 512×512 pixels and the blurring function is an approximately
two-dimensional Gaussian bell  (x) shown in Fig. 21. The deconvolution formula is similar to

Eqn. 72.

The result from the deconvolution using up to 20 iterations with  = 2 is displayed in Fig. 22.

Increasing  beyond 2 leads to instabilities as seen in Fig. 23.

Finally, Fig. 24 shows the original, the blurred and the restored picture after 20 iterations.

5 THE MAXIMUM ENTROPY PRINCIPLE

This, still somewhat controversial, principle for solving incompletely defined problems was

introduced by E.T. Jaynes in 1957. Read about the fascinating and diverse history of entropy

in physics and informatics on Wikipedia!

This section requires some rudimentary knowledge of variational calculus.
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Figure 20: Numerical simulation of deconvolution using the Van Cittert method. Top: ”Measured”

signal; Middle: Deconvoluted signal; Lower: Ideal signal.

Consider the collection of probability distributions  () defined on a set Ω,

D =
½
 () ;  ∈ Ω  () ≥ 0

Z
Ω

 ()  = 1

¾
 (73)

Note that D is convex. The entropy (also called Shannon Entropy or Information Entropy) of
a probability distribution was introduced by Claude E. Shannon in 1948,

 () = −
Z
Ω

 () ln  ()  (74)

A similar expression applies for a discrete distribution. The entropy expresses the degree of

uncertainty about a stochastic variable: Consider a binary variable taking the value 0 with

probability  and the value 1 with probability 1 − . Compare  for no uncertainty ( → 0

or 1) with maximum uncertainty ( = 12).
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Figure 21: Point Spread Function used in the Lena example. Axes show pixels.

If the integral over Ω is equal to 1,
R
Ω
 = 1, then  () is maximized for  () ≡ 1. Try to

figure out your own argument, or consider the convex Lagrangian

L ( ) =
Z
Ω

 () ln  () + 

µZ
Ω

 () − 1
¶
 (75)

and solve  (  ) = 0.

Assume that measurements of the stochastic variable  have given us some information about

its probability distribution . Quite often we’ll have estimates about integral properties likeZ
Ω

 ()  ()  =   = 1 · · ·  (76)

Recall that the mean value and the mean of the squares are of this form. So is also the

requirement
R
Ω
 ()  = 1. The question is now: What is the best probability distribution

 satisfying Eqn. 76? Let us maximize the entropy (equivalent to minimizing the negative

entropy) subject to the constraints enforced by the data equations in Eqn. 76.

min
∈D

L ( ) = min
∈D

(Z
Ω

 () ln  () −
X
=1



µZ
Ω

 ()  () − 

¶)
 (77)

Obviously, all allowed variations  in  have to satisfy  () +  () ≥ 0 and R
Ω
 ()  = 0. If

we compute the derivative of L ( ), and set this equal to 0,

 (  ) =

Z
Ω

(
ln  () + 1−

X
=1

 ()

)
 ()  = 0 (78)

we obtain,

 () = exp

Ã
X
=1

 ()− 1
!
 (79)

It remains to find 1 · · ·  , and this amounts to solving the  nonlinear equationsZ
Ω

 () exp

Ã
X
=1

 ()

!
 =   = 1 · · ·  (80)
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Figure 22: Van Cittert deconvolution applied to a blurred version of Lena.

Problem: For Ω = R, solve the problem

∗ = argmin
∈D

{− ()}  (81)

when Z
R
 ()  = 1 (82)Z

R
 ()  = 0 (83)Z

R
2 ()  = 1 (84)

The maximum entropy functional serves as a regularization for severely under-determined in-

verse problems. If we have some a priori information we would like to incorporate into the

regularization, this may be done by using the cross-entropy, defined as

 () = −
Z
Ω

 () ln

µ
 ()

0 ()

¶
 (85)

Show that the global maximum of  (without further constraints) is obtained for  = 0.
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Figure 23: Same as previous figure, but with  = 23. The deconvolution is no longer stable, resulting

in over-compensation. In this case, the iteration clearly has to stop at the right place.

Figure 24: Original image (center), blurred image to the left, and deconvoluted image ( = 2, 20

iterations) to the right.
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6 EPILOGUE

This summary of inverse problems is quite incomplete. In particular, probabilistic and Bayesian

reasoning for inverse problems is a fast growing field which has not been discussed. The freely

available book of Albert Tarantola in the reference list discusses this in detail and contains

many additional references.

Another omission is the inverse scattering theory for nonlinear partial differential equations

developed during the last 50 years.

Internet encyclopedias such as Wolfram MathWorld and Wikiperia are important sources for

further information.
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