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About this note: Some years ago the basic theory of Linear Programming was set up as a
self-study part. In order to ease the work, the note below was written as a guide to Chapter 13 in
N&W. I still think that reading the note and carry out all �Tasks� is the best way of absorbing
this material! The note covers the LP part of the curriculum.

Linear Programming is �rst of all a somewhat unfortunate name of what today should have been
called Linear Optimization. This change in terminology has never occurred, and we shall follow
the rest of the bunch and continue to use Linear Programming, or "LP" for short.

Write in "Linear Programming" or "LP optimization" as search words in Google, and see that
the world is full of consulting companies specializing in LP services!

Linear programming means

� a linear objective function!

� linear constraints!

A Task below is a small piece of work to be carried out by you!

1 The LP Problem

We are now considering problems where the objective function is linear

f (x) = a+ c0x: (1)

Since a is a constant, we shall always assume that a = 0 and c 6= 0. Note that since rf = c0 6= 0,
all solutions have to be on the boundaries of the feasibility domain, 
, which in general is de�ned
in terms of linear equality constraints,

a0ix = bi; i 2 E ; (2)

and linear inequality constraints,
a0ix � bi; i 2 I: (3)

In addition, since second derivatives will be 0, there are no second order conditions to consider in
the LP-case.

Task 1: Show that the objective function and the feasible domains are convex. What geometric
sets are de�ned by Eq. 2 and 3?

This implies that if solutions exist, they are global minima and make up a convex set. By
the Convex KKT theorem (see the KKT note), a KKT point is a therefore a global minimum.
Moreover, the LICQ condition is not necessary. In conclusion, for the LP-situation, x� is a global
minimum if and only if it is a KKT-point (This does not imply that x� is unique!).
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Task 2: There are two situations where no solution exists, and one is that the constraints are
incompatible such that 
 = ?. What other situation may occur ? Hint: Is 
 always bounded?
The feasible domain 
, as an intersection of hyperplanes and half-spaces, is called a polytope. A
bounded polytope is called a polyhedron.

It is convenient to have a common form for the LP problems when we go through the theory, and
it is customary to call the following problem the Standard Form:

min c0x

Ax = b; A has full row rank, (4)

x � 0:

We shall write Rn+ = fx ; x � 0g. As usual, "x � 0" is a short way to write xi � 0, i = 1; � � � ; n.
This set is called the closed, non-negative cone in Rn. Thus,


 = Rn+ \ fx ; Ax = bg : (5)

Task 3: Show that we, without changing 
, may reduce the number of rows in A to a situation
where it has full row rank. Show that this reduction may lead us into the following situations:

� 
 = ?

� 
 = fx�g

� 
 = fx0 +N (A)g \ Rn+; where Ax0 = b; x0 � 0.

All LP problems may be transformed into the standard form, at the expense of introducing more
variables (read �rst the Introduction pages of Chapter 13 in N&W).

Task 4: Consider the �ve cases below and reduce them to the Standard Form. In each case, write
down the new A, b, and x!

1. x � d, that is, xi � di; i = 1; � � � ; n.

2. Ax � b. Add a new set of variables z, called slack variables, such that Ax+ z = b.

3. Ax � b. Similar to above, add a vector z of surplus variables, such that Ax = b+ z.

4. No non-negativity bound on some of the x-s, say xf = (x1; � � � ; xk) ; k � n (we say that xf
is "free"). Write xf as the di¤erence between the non-negative vectors y and z, xf = y� z.

5. a � x � b, that is, ai � xi � bi, i = 1; � � � ; n.

Task 5: Transform the following problem to standard form:

max (�x1 + x2) ;
x1 � 2 + x2; (6)

6� x2 � x1

2



Task 6: Look up Matlab Optimization Toolbox and check whether the present version still uses
its own and di¤erent �Standard Form�:

Aieqx � bieq;
Aeqx = beq; (7)

vl � x � vh; (8)

where
�1 � vl � vh � 1 (9)

(to be understood component-wise). How can we move between the two �standard forms�?

2 The KKT Conditions

An essential part of the proof of the KKT Theorem was that the LICQ condition should hold.
By Lemma A, this implied that the two sets

T (x) = fd; d is a feasible directiong ; (10)

F (x) = fd ; rci (x) d = 0; i 2 E ;rci (x) d � 0; i 2 Ig ; (11)

were equal. For the LP situation T (x) is always equal to F (x) (N&W Ed. 2: Lemma 12.7 pp.
338�339.):

Task 7: Try to see this yourself by �rst selecting a d 2 F (x), x 2 
, and then prove d is feasible
by verifying that x + td 2 
 for all su¢ ciently small and positive t-s. Hint: Check that all
constraints are valid, both active and non-active when t is small enough, and remember that we
always have T (x) � F (x)).
Let us consider the KKT-conditions for the standard form de�ned in Eq. 4. We follow N&W and
split the Lagrange vector into two parts; � for the equality constraints and s for the inequality
constraints:

L (x; �; s) = c0x� �0 (Ax� b)� s0x: (12)

Task 8: Verify the KKT-equations

c�A0� � s = 0; (13)

Ax = b; (14)

x � 0; (15)

s � 0; (16)

s0x = 0: (17)

Note that because of Eq. 15 and 16, Eq. 17 is equivalent to

sixi = 0; i = 1; � � � ; n: (18)

The KKT-equations are a nonlinear system of equations and inequalities in 2n + rank (A) un-
knowns. The system looks innocent, but it is often a non-trivial task to �nd even a single x 2 
!
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3 Duality

Duality is essential for LP-problems, and the concept may also be de�ned for some nonlinear
problems. In Duality Theory, variables and Lagrange multipliers switch place!

De�nition: For every LP problem there is another dual problem with the same KKT-equations,
where the Lagrangian multipliers are the unknowns, and the original variables are the Lagrangian
multipliers.

Proposition: The dual problem to the Standard Problem (Eq. 4) is

max b0�

A0� � c; (19)

By writing the dual problem as

min
�
�b0�

�
;

c�A0� � 0 (20)

and using x as the Lagrange multipliers, the Lagrangian becomes

L (�; x) = �b0� � x0
�
c�A0�

�
; (21)

In this case, the vector s is not explicitly present, and KKT equations are

r�L (�; x) = �b0 + x0A0;
c�A0� � 0 (constraints);

x � 0 (non-negative multipliers); (22)

x0
�
c�A0�

�
= 0 (complementarity equations).

However, by introducing s = c � A0�, we obtain exactly the same KKT-equations as for the
standard form:

s = c�A0�;
Ax = b; (23)

x � 0; s � 0; (24)

x0s = 0:

In duality terminology we use the generic name Primal (problem) about our original problem,
and Dual (problem) about its dual.

There are several ways to �nd the dual problem of a given primal problem. One way is just
by inspection of the KKT-equations, but the simplest is probably to convert any primal to the
Standard Form de�ned in Eq. 4, and then apply the proposition for its dual, Eq. 19. In practice,
it seems to be no way around trying to remember this, or the following equivalent variant:

Task 9: Verify the so-called symmetric pair of LP primal-dual problems:

Primal Dual
min c0x
Ax � b;
x � 0

max b0�
c � A0�
� � 0

(25)
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Figure 1: The objective values for the dual are to the left of the values for the primal. The
maximum of the dual and the minimum of the primal objectives are the same.

This form may alternatively be memorized and used for identifying dual (or primal) problems.

The following task is one of the basic results in Duality Theory:

Task 10: Verify, by applying the result in Task 9, that the �dual problem of a dual problem is
the primal problem�(after suitable reformulations).

Apart from an interesting correspondence, and a certain �duality� in diet-food manufacturer
problems, duality plays a major part in many algorithms for LP problems. In fact, if we know
an approximate solution for our primal problem and also an approximate solution for the corre-
sponding dual, we have an accurate measure of how far the objective is from its optimum value.
A close-to-optimal objective and not necessarily an accurate x� may in many cases be our main
goal.

We have seen above that a given LP problem may be expressed in many di¤erent, but equivalent
forms, and this also applies to the duals. Thus, we follow N&W and consider the primal in Eq. 4
and the dual in Eq. 19.

The Duality Theorem (N&W Theorem 13.1):

1. If either the primal or the dual problems have feasible points, then so does the other, and
the optimum objective values are equal.

2. If either problem has an unbounded objective, then the other problem has no feasible points.

Proof: Assume �rst that the primal has a �nite and hence optimal solution (x�; ��; s�) to the
KKT-equations. Then, for any feasible point x 2 
; and since c = A0�� � s�, s� and x� � 0, and
s�0x� = 0;

c0x � c0x� =
�
��0A� s�0

�
x� = ��0Ax� = ��0b: (26)

However, since the dual problem is an LP-problem by itself, and in particular convex, the solution
(x�; ��; s�) is also a solution to the dual (identical) KKT-equations! Thus, �� will be an optimal
solution to the dual problem, and we can turn around and complete the above chain to

b0� � b0�� = c0x� � c0x (27)

The situation is illustrated in Fig. 1: All the objective values of the dual problem are below the
objective values for the primal, and the optimal solutions of both problems have identical values
on the objective.

Task 11: Try to complete the proof of the Duality Theorem, and then look into N&W, pp. 361�
362.

In the primal-dual methods of LP (N&W Sec. 14.1) we try to solve the primal and the dual
simultaneously. At all steps, the duality gap, that is, the interval�

b0�(k) ; c
0x(k)

�
; (28)
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encloses the optimal objective value. This is excellent if a good value on the objective is our main
goal.

4 The Geometry of 


In order to approach an algorithm for LP-problems, we shall take a closer look at the geometry
of the feasible set. This will lead us into some interesting properties of convex sets.

Consider again the standard problem with A having full (row) rank. We have already observed
that 
 is a convex polytope. Since the number of constraints are �nite, the boundary will be
"piecewise �at". If we think of a polyhedron in R3, the boundary points may be on a face, an
edge, or at a corner (vertex ). These concepts may be generalized, and, in particular, we say that
a point xe on the boundary of 
 is an extreme point if

xe = �y + (1� �) z ; y; z 2 
 ; 0 < � < 1 (29)

implies that y = z = xe. This means that xe can not be a point on a line segment in 
, unless it
is one of the end-points.

Task 12: Where are the extreme points for a line segment, for R and Rn+, a cube, and a sphere
(all sets closed)?

Digression: The famous Krein-Milman Theorem is a cornerstone in convexity theory: A closed,
bounded (more exact, compact) convex set is equal to the closure of all convex combinations of
its extreme points (A convex combination is like the one in Eq. 29, but involving m points,
x =

Pm
i=1 �iyi, with �i > 0 and

Pm
i=1 �i = 1).

Task 13: How does the Krein-Milman Theorem work for a cube?

We are going to identify the extreme points in 
 as so-called basic points, or basic feasible points.
Write A = [a1; a2; � � � ; an] where faig are the columns of A, and A has full rank, rank (A) = r.
De�nition: A feasible point x satisfying Ax = b, x � 0, is called a basic point if there is an index
set B = fi1; � � � ; irg, where fai1 ; � � � ; airg are linearly independent and xi = 0 for all i =2 B.
This note will be using the term basic point, and not the somewhat unfortunate name basic
solution also found in the LP literature. We shall reserve the term basic solution to an optimal
solution which is also a basic point.

If xi happens to be 0 also for some i 2 B, we say that the basic point is degenerate.
Note that for a basic point, the corresponding r � r matrix

B = [ai1 ; � � � ; air ] ; (30)

will be non-singular, and the equation BxB = b will have a unique solution.

The basic points in 
 play an essential part in the following. In fact, the next result is central:

The Fundamental Theorem for LP (N&W Theorem 13.2)

1. If 
 6= ?, it contains basic points.

2. If there are optimal solutions, there are also basic solutions.

Proof of 1: (Note that for the following arguments, we assume that the problem is stated in
standard form, Eq. 4). Find in some way, since 
 6= ?, an x 2 
 with as few non-zero components
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as possible. Assume (by renumbering the variables) that these components are x1; x2; � � � ; xp:
Hence,

b =

pX
i=1

aixi: (31)

Task 14: Assume that fa1; � � � ; apg are linearly dependent and make up a 0-combination, z =Pp
i=1 aizi = 0: Add a suitable small amount of z, y = x + "z, and obtain a new feasible point

(don�t forget that xi is supposed to be larger than 0!),

Ay = b; y � 0; (32)

with at most p�1 non-zero components �a contradiction! Having shown that fa1; � � � ; apg have
to be linearly independent, add more linearly independent columns to the set, and show that x is
a basic point.

The proof of 2. is similar: Find an optimal solution x� with as few non-zero components as possible.
Assume that x� is not a basic point and use a zero-combination z to construct a contradiction:
First show that since x� is an optimal solution, c0z = 0, so that y = x + "z is optimal as well.
Finally, add columns to as to make x� an optimal basic solution.

The next theorem states the equivalence announced above.

Theorem (N&W Theorem 13.3): The basic points are the extreme points of 
.

The proof is similar to the previous one:

Task 15: Assume that x is not a basic point. Show that it is then possible to write

x =
1

2
(x� "z) + 1

2
(x+ "z) , (33)

with both (x� "z) and (x+ "z) in 
, so that x is not extreme.
For the converse, assume that x is a basic point with (after renumbering) at most the �rst r
components are di¤erent from 0, and B = [a1; a2; � � � ; ar]. Write A = [B;N ]. Assume that
x = �y + (1� �) z. Show that y = z = x, by proving that y and z are basic solutions as well.
Do not struggle too much with these tasks. Consult N&W if you do not see a way out!

The Fundamental Theorem and Theorem 13.3 show that it enough just check the vertices of 
 for
optimal solutions. Unfortunately, there may be a lot of these, even for low-dimensional problems.
In fact, there are as many corners as there are subsets of r linearly independent columns in A.
Thus, the number of basic points is somewhere between 1 (since the Fundamental Theorem proves
their existence) and

�
n
r

�
,�but, at least, the number is �nite!

The objective function may have the same optimal value at several vertices. Also, if x�a and x
�
b

are optimal solutions, and hence f (x�a) = f (x
�
b), then even �x

�
a+(1� �)x�b , 0 � � � 1, is optimal

(recall what we know about the set of optimal solutions!).

5 The Simplex Algorithm

The name simplex refers to the shape of 
, see the literature. The Simplex Algorithm is reported
to have been discovered by G. B. Dantzig in 1947 and published around 1949. The idea of the
Simplex Algorithm is to search for the minimum by going from vertex to vertex (from basic point
to basic point) in 
:
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As G. Strang says in his book about Linear Algebra, the algorithm in the pre-computer days,
with its so-called numerical tableau-s, was surrounded with an �aura of mystery�. The tableau
was just a practical way of setting up the matrix calculus, but the days of the tableau are gone
forever.

Unless you are interesting in the history of computation, there is no point in doing a simplex
solution with pen and paper anymore, but the geometric idea is quite elegant, and coding the
algorithm is challenging. Below we discuss the basic steps in the iteration and the question of
�nding a starting point.

5.1 The Simplex Iterative Step

We assume that the problem has the standard form and that we are located in a basic point,

x =

�
xB
0

�
; (34)

where the partition is according to A = [B N ], where B non-singular, and such that

Ax = [B N ]

�
xB
0

�
= BxB = b: (35)

More generally, with perhaps a little confusing notation, we split a general x in the same way,

A

�
x1
x2

�
= Bx1 +Nx2 = b: (36)

Hence,
x1 = B

�1 (b�Nx2) = xB �B�1Nx2: (37)

We stay at a point where x1 = xB and x2 = 0, and we now try to change one of the components
(x2)j of x2 (make it a little positive) such that the objective function,

f (x) = c0x = c01x1 + c
0
2x2 (38)

decreases.

Task 16: Prove that
f (x) = c0x = c01xB +

�
c02 � c01B�1N

�
x2 (39)

and that we already have the solution of the full problem if all components of
�
c02 � c01B�1N

�
are

non-negative!

OK, assume that
�
c02 � c01B�1N

�
j
is negative, such that f (x) really decreases if the corresponding

(x2)j increases from 0. But this a¤ects x1, which will now start to change from xB.

Task 17: Assume that all components of x1 increase when (x2)j increases. Show that

min
x2


c0x = �1: (40)

In general, some components of x1 will increase and some will decrease, and this situation is
illustrated in Fig. 2.

Assume that the basic point was non-degenerate (that is, all components of xB di¤erent from 0).
We now increase (x2)j until some of the components in x1 hit 0. We then have a new feasible point
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Figure 2: Before we start to move (x2)j , we have the basis solution (blue). When (x2)j changes,
this a¤ects x1, where some components increase and some decrease.

with at most r components di¤erent from 0, and where f (x) has decreased. If the corresponding
columns in A are linearly independent, we have a new basic point.

Task 18: Prove that the Simplex algorithm always converges if all basic points are non-degenerate
and the objective is bounded below on 
.

What happens if one component, (xB)k, in xB is 0? When we increase (x2)j , the component
may increase (good!), or decrease (prohibited!). If we had bad luck, we replace the column
corresponding to (xB)k by another (linearly independent) column from the set corresponding to
x2 and try again, and again, and again, � � � .
There are a lot of smart tricks to make this choice, which we will not go into here.

This is basically it for the Simplex Algorithm, as soon as we have been able to start (see below).

Some additional notes:

� It is straightforward to construct a generalized Simplex Algorithm for bounds of the form

li � xi � ui; i = 1; � � � ; n: (41)

This will save us from increasing the number of unknowns.

� If we LU -factorize B once, we can update the factorization with the new column without
making a complete new factorization (N&W, Sec. 13.5).

� It is often preferable to take the �steepest ridge�(fastest decrease in the objective) out from
where we are (N&W, Sec. 13.5).

5.2 Starting the Simplex Method

In general, the Simplex method consists of two phases:

� Phase 1: Find a �rst basic point

� Phase 2: Solve the problem

The following outlines one possible way for the phase 1 algorithm:

� Change the signs in Ax = b so that b � 0:
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� Introduce additional variables y 2 Rr and solve the extended problem

min (y1 + � � �+ yr) ;

[A I]

�
x
y

�
= b; (42)

x; y � 0:

(Note that
�
0
b

�
already is a basic point for this problem!).

Assume that the solution is �
x0
y0

�
: (43)

Task 19: Prove that if y0 6= 0, then the original problem is infeasible ( 
 = ?).
Task 20: Prove that if y0 = 0, then x0 is a basic point (= possible start point for the original
problem).

6 Final Notes

The following notes re�ect my own current knowledge, and are not necessarily up-to-date.

One famous problem in LP has been whether there are algorithms for x 2 Rn where the number
of operations grows as n� for some positive �.

The Simplex algorithm has long been demonstrated to require an exponential number of opera-
tions in the worst case: It possible to show, for a certain hypercube-shaped 
 with 2n vertices,
that the algorithm may be set up so that it is forced to visit all vertices (Klee�Minty�Cheval
counterexample). The selection of the columns to include is essential, and the �steepest ridge�
is assumed for the counterexample However, such bad performance has never been observed in
practical problems.

A breakthrough came in the late 70-ties when Khachiyan (1978) published a so-called interior
point method which encloses the solution in a sequence of ellipsoids containing x� with L signi�cant
digits after O

�
n4L

�
operations.

The Karmankar method from 1984 is simpler and slightly faster, O
�
n3:5L

�
.

As far as I know, the current record is, for so-called Interior Barrier Primal�Dual methods,
O
�
n3L

�
.

It should be also be mentioned that in spite of these theoretical bounds, the Simplex algorithm
is still compatible to interior point methods for medium sized problems. Interior Point Methods
are discussed in N&W in Chapter 14.

It still appears to be open whether there exists an algorithm such that

# operations _ nprq ; p; q > 0: (44)

It has also been discovered that interior point algorithms have been proposed earlier without
getting the notice they deserved. One such approach, discussed in G. Strang�s book on Linear

10



Algebra, is Dikin�s Method from 1967. This is a trust region method of the form

xk+1 = argmin c
0x;

Ax = b; (45)

x 2 E (xk) ;

where E (xk) is the ellipsoid

E (xk) =

(
x ;

nX
i=1

�
xi � (xk)i
(xk)i

�2
� 1

)
: (46)

Task 21: Prove that the solution of Dikin�s Problem in Eq. 45 is

xk+1 = xk �
DPMDc

kPMDck
;

D = diag (xk) ; (47)

PM = Projection operator on N (AD) :

A barrier method related to the O
�
n3L

�
-algorithm was also proposed already in the 1950-ies by

the Norwegian Nobel laureate in Economy, Ragnar Frisch,

x� (�) = min
�
c0x+ �p (x)

�
;

Ax = b

p (x) = �
nX
i=1

lnxi (48)

�! 0;

(R. Frisch: The Logarithmic Potential Method for Convex Programming, Report University of
Oslo, 1955).

We shall return to this method after discussing penalty and barrier methods.
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