THE LP PROBLEM IN STANDARD FORM

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} c^{\prime} x \\
A x=b, x \geq 0
\end{gathered}
$$

- $x \geq 0$ means $x_{i} \geq 0, i=1, \cdots, n$.
- A of size $r \times n$ is supposed to have full rank r.
- Ω is a polytope (polyhedron if bounded).
- This is a convex optimization problem $\Rightarrow \mathrm{KKT}$ conditions sufficient for a global minimum.

GEOMETRY OF THE FEASIBLE SET

Definition: The point $x_{e} \in \partial \Omega(=$ the boundary of Ω) is an extreme point if

$$
x_{e}=\theta y+(1-\theta) z, y, z \in \Omega, 0<\theta<1
$$

implies that $y=z=x_{e}$.

Where are the extreme points for a line segment, for \mathbb{R} and \mathbb{R}_{+}^{n}, a cube, and a sphere (all sets closed)?

The extreme points for Ω are the vertices.

Definition: A feasible point $x(x \geq 0, A x=b)$ is called a basic point if there is an index set $\mathcal{B}=\left\{i_{1}, \cdots, i_{r}\right\}$, where the corresponding subset of columns of A,

$$
\left\{a_{i_{1}}, \cdots, a_{i_{r}}\right\}
$$

are linearly independent, and $x_{i}=0$ for all $i \notin \mathcal{B}$.

If x_{i} happens to be 0 also for some $i \in \mathcal{B}$, we say that the basic point is degenerate.

For a basic point, the corresponding $r \times r$ matrix

$$
B=\left[a_{i_{1}}, \cdots, a_{i_{r}}\right]
$$

will be non-singular, and the equation $B x_{B}=b$ has a unique solution.

The Fundamental Theorem for LP (N\&W Theorem

 13.2):1. If $\Omega \neq \varnothing$, it contains basic points.
2. If there are optimal solutions, there are optimal basic points (basic solutions).

Theorem (N\&W Theorem 13.3): The basic points are the extreme points of Ω.

The number of basic points is between 1 (because of the first statement in the Fundamental Theorem) and $\binom{n}{r}$.

THE SIMPLEX ALGORITHM

- The Simplex Algorithm is reported to have been discovered by G. B. Dantzig in 1947.
- The idea of the Simplex Algorithm is to search for the minimum by going from vertex to vertex (from basic point to basic point) in Ω.
- Hand calculations are never used anymore!

The Simplex Iteration Step

We assume that the problem has the standard form, and that we are located in a basic point which, after a rearrangement of variables, has the form

$$
x=\left[\begin{array}{c}
x_{B} \\
0
\end{array}\right]
$$

The partition is therefore according to $A=[B N]$, where B is non-singular, and

$$
A x=\left[\begin{array}{ll}
B & N
\end{array}\right]\left[\begin{array}{c}
x_{B} \\
0
\end{array}\right]=B x_{B}=b .
$$

Split a general $x \in \Omega$ in the same way,

$$
A x=\left[\begin{array}{ll}
B & N
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=B x_{1}+N x_{2}=b .
$$

Hence,

$$
x_{1}=B^{-1}\left(b-N x_{2}\right)=x_{B}-B^{-1} N x_{2} .
$$

Note also that

$$
\begin{aligned}
f(x) & =c^{\prime} x=\left[c_{1} c_{2}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =c_{1}^{\prime} x_{1}+c_{2}^{\prime} x_{2} \\
& =c_{1}^{\prime}\left(x_{B}-B^{-1} N x_{2}\right)+c_{2}^{\prime} x_{2} \\
& =c_{1}^{\prime} x_{B}+\left(c_{2}^{\prime}-c_{1}^{\prime} B^{-1} N\right) x_{2}
\end{aligned}
$$

Around $\left[x_{B} 0\right]^{\prime}$, we may express both x_{1} and $f(x)$ in terms of x_{2}.

We are located at $x_{1}=x_{B}, x_{2}=0$, and try to change one of the components $\left(x_{2}\right)_{j}$ of x_{2} so that

$$
f(x)=c_{1}^{\prime} x_{B}+\left(c_{2}^{\prime}-c_{1}^{\prime} B^{-1} N\right) x_{2}
$$

decreases.

- If $\left(c_{2}^{\prime}-c_{1}^{\prime} B^{-1} N\right) \geq 0 \Rightarrow$ FINISHED!

Assume that $\left(c_{2}^{\prime}-c_{1}^{\prime} B^{-1} N\right)_{j}<0$:

- If all components of x_{1} increase when $\left(x_{2}\right)_{j}$ increases, then

$$
\min c^{\prime} x=-\infty
$$

\Rightarrow FINISHED!

If not, we have the situation shown in Fig. 1.

Figure 1: Change in x_{1} when $\left(x_{2}\right)_{j}$ increases from 0.

- The Simplex algorithm always converges if all basic points are non-degenerate.
- Degenerate basic point: Try a different component of x_{2}. (FINISHED if impossible!)
- It is straightforward to construct a generalized Simplex Algorithm for bounds of the form

$$
l_{i} \leq x_{i} \leq u_{i}, i=1, \cdots, n .
$$

- If we $L U$-factorize B once, we can update the factorization with the new column without making a complete new factorization (N\&W, Sec. 13.4).
- It is often preferable to take the "steepest ridge" (fastest decrease in the objective) out from where we are (N\&W, Sec. 13.5).

Starting the Simplex Method

The Simplex method consists of two phases:

- Phase 1: Find a first basic point
- Phase 2: Solve the original problem

The Phase 1 algorithm:

1. Turn the signs in $A x=b$ so that $b \geq 0$.
2. Introduce additional variables $y \in \mathbb{R}^{r}$ and solve the extended problem

$$
\begin{gathered}
\min \left(y_{1}+\cdots+y_{r}\right), \\
{\left[\begin{array}{ll}
A & I
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=b, \quad x, y \geq 0 .}
\end{gathered}
$$

(Note that $[0 b]^{\prime}$ already is a basic point for the extended problem!).

Assume that the solution of the extended problem is

$$
\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

- If $y_{0} \neq 0$, then the original problem is infeasible $(\Omega=\varnothing)$.
- If $y_{0}=0$, then x_{0} is a basic point ($=$ possible start for the original problem).
- This is not the only Phase 1 algorithm.

1 EPILOGUE

- Open Problem: Are there LP algorithms of polynomial complexity?
- The Simplex Method has exponential complexity in the worst case (Klee-Minty-Cheval counterexample)
- Interior Point Methods (Khachiyan, 1978): \#Op \propto $\mathcal{O}\left(n^{4} L\right)$
- Karmankar (1984): $\# O p \propto \mathcal{O}\left(n^{3.5} L\right)$
- Current record (?): Interior Barrier Primal-Dual methods, $\# O p \propto \mathcal{O}\left(n^{3} L\right)$. (We return to this method after discussing penalty and barrier methods)
- Solving large LP problems is BIG business!
- Entering data into the computer for large LP problems is a lot of work. Look up a description of the industry standard "MPS Data Format" on the internet.

