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This note was originally prepared for earlier versions of the course. Nocedal and Wright has
now a nice introduction to Least Square (LS) optimization problems in Chapter 10, and the
note is now therefore only a small supplement. It re�ects that LS problems are by far the most
common case for unconstrained optimization. See also N&W, p. 245�250 for typical examples of
LS problems.

Least Square problems have often their origin in �tting models to observations. In its simplest
form, we know this from the problem of �tting a regression line, y = ax+ b, through a set of data
points fxi; yig ; i = 1; � � � ; N . When N > 2, it is in general impossible to put the line through
all points, but we try to determine an optimal line, for example by determining the pair fa�; b�g
which minimizes the objective function

f(a; b) =
NX
i=1

(axi + b � yi)
2 : (1)

In this simple case, it is easy to derive the solution analytically, but in general the solution
has to be found numerically. Since these problems are so common, there has been a lot of work
involved in adapting the general algorithms for unconstrained optimization to this special case.
It is more e¤ective to use specially adapted algorithms instead of the more general ones.

Below we �rst consider the linear LS problem, which some of you would know from linear
analysis or multiple linear regression in statistics. The notation may di¤er somewhat from what
you know, but the ideas are the same.

The singular value decomposition is an important tool for analyzing the linear problem, and
the linear problem is also important for the solutions of the various iteration steps in non-linear
LS problems. In the non-linear algorithms we once more meet basic tools like line search and
trust region methods, which utilize the special form of the gradient and Hessian the LS problems
have.

1 Linear Least Square Problems

1.1 The origin

Although LS problems stem from a variety of di¤erent situations, we shall consider a situation
where n factors in�uence the result of an experiment. For each experiment we know the values
of the factors, say fa1; :::; ang, and we are able to measure the result �.
We are interested in �nding a function f (a1; :::; an) which can be used to compute the result

without having to repeat the experiment each time. In practice, this may be quite di¢ cult:

� A lot of factors may be involved

� We are not quite sure whether a factor counts or not

� There may be factors unknown to us
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� We have no idea how the function f looks

� It is expensive and/or time consuming to carry out experiments

� We have only limited time and budget to �gure out a solution

All these points are part of real life, where you often �nd yourself in a group of colleagues
where you are the least incompetent member.

The �rst guess if one does not know anything will often be to assume that there is linear
dependency between the factors and the result. In other words, we are looking for a set of
coe¢ cients or weight factors fx1; � � � ; xng such that

a1x1 + a2x2 + :::+ anxn � �: (2)

Note that things are turned around here: When we apply the formula after the x-s are deter-
mined, we put in fa1; � � � ; ang and get an estimate of �, denoted �̂. The expression should in
general also include a constant term, and this is obtained by letting a1 = 1, so that the formula
reads �̂ = x1 + a2x2 + � � �+ anxn.
In order to determine the x-s, we need to carry out a set of calibration experiments. If we do

not know anything about the x-s, we would like to have m > n experiments: If the number of
experiments is less than n (often the situation in practice), there will in general be many di¤erent
sets of weight factors �tting Eqn. 2, and if we have exactly n experiments, we could still satisfy
Eqn. 2 exactly, but would have no idea how well the equation is satis�ed in other cases.

Let us store the values of the factors in them�n matrix A and the results in them dimensional
vector b, such that

A = fai1;ai2; � � � ; aing; i = 1; � � � ;m; (3)

b = f�1; � � � ; �mg0 : (4)

Since it would be too good to be true if we really found a vector x such that Ax = b, we are
satis�ed if we are able to �nd x such that the sum of the squared deviations is minimized:

min
x

mX
i=1

(ai1x1 + ai2x2 + :::+ ainxn � �i)2 : (5)

In matrix notation this is equivalent to �nding the minimum of the function

f(x) =
1

2
kAx� bk22 =

1

2
(Ax� b)0(Ax� b): (6)

1.2 Solution of the full rank problem

By carrying out the multiplications in Eqn. 6, we �nd that

f(x) =
1

2
(Ax� b)0(Ax� b) = 1

2
x0A0Ax � x0A0b+ b

0b

2
; (7)

which we, by now, should recognize as the quadratic test problem.

If A0A happens to be positive de�nite (which requires that m � n), we already know that the
solution, x�, satis�es the equation

A0Ax = A0b: (8)
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(Convince yourself that all matrix multiplications make sense!). The system of equations in 8 is
called the Normal Equations.

It turns out that A0A is positive de�nite if and only if A has full column rank. In this case,
where m > n, this means that rank(A) = n, or that all columns of A are linearly independent.
That is equivalent to Ax = 0 , x = 0, which in turn is equivalent to x0A0Ax = kAxk2 = 0 ,
x = 0.

Even if A has full rank mathematically, it is not necessarily reasonable numerically to solve
the normal equations. The condition number of A is the ratio between its largest and smallest
singular value (see below), and the condition number of A0A will be the square of that. In order
to avoid numerical problems, the best is to use a QR-factorization of A. The 2-norm is invariant
under orthogonal transformations, and this reduces the problem to solving a linear system of
equations with n unknowns which has the upper n� n sub-matrix of R as its coe¢ cient matrix.
A short summary of this is given in N&W p. 251, and a more extensive treatment is found in the
book of Golub and vanLoan [2], Chapter 5.

Cases involving a few factors and a large number of experiments are not likely to experience
any problems with the Normal Equations.

1.3 The rank de�cient problem

If the rank of A, r = rank (A), is less than n, the problem will still have solutions, but they are
not unique. The null space of A, N (A), is the set of all vectors z such that Az = 0, and when
the column rank, rank (A), is less than n, N (A) contains non-zero vectors (recall the de�nition
of rank!).

Obviously, if x� is a solution to 6, then x� + z, z 2 N (A) will be a solution as well since
A0Az = 0 and f (x� + z) = f (x�).

The existence of solutions is not obvious, but follows by considering Eqn. 8 as an equation not
in Rn but in the smaller orthogonal complement of the null-space of A, N (A)? (which is equal
to the row-space of A). Check out all de�nitions you do not know/recall and try to carry out the
following steps:

1. Show that A0b and A0Ax are members of N (A)? by taking the scalar product with a vector
z 2 N (A).

2. Show that the matrix A0A is non-singular when restricted to N (A)? (This amounts to show
that kAyk = 0 () y = 0 when y 2 N (A)?).

3. Show that there is a unique x� 2 N (A)? such that A0Ax� = A0b

(This may be a little tough if you are not familiar with linear algebra and linear transformations.
It is not that important, �the solution exists).

The rank de�cient case will occur if we try to explain our result by including too many factors.
In practice, it is smart to start with few factors and then include one additional factor at a time.
By supervising kAx� bk, we get a feeling of when enough is enough.
Even if A is rank de�cient, the function f (x) in Eqn. 7 is still convex since A0A � 0, and

the set of global minima, � = fy; f(y) = ming, is therefore a closed convex set (We proved above
that there are indeed optimal solutions, so � is de�nitely non-empty).
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Are all these possible solutions equally good? Mathematically yes, but in practice we are using
x for predicting or estimating �, and the predictor �̂ for a given set of factors, a, is simply

�̂ = a0x�: (9)

Unnecessary large components in x� will magnify any measuring errors in the factors a. Therefore,
it is reasonable to use as small x� as possible.

If we, on the convex set �, de�ne the strictly convex function g(y) = kyk22, the function will
have a unique minimum, and this would be the special solution we are looking for:

x� = argmin
AtAx=Atb

kxk22 : (10)

Can you prove that x� has to be equal to the solution in N (A)?? (Recall that any solution may
be written uniquely as x� = x0+ z, where z 2 N (A) and x0 2 N (A)?. Then apply Pythagoras).

There are several numerical methods for �nding x� described in N&W, as well as in [2]. The
most robust although not the cheapest computationally is based on the Singular Value Decom-
position of A.

1.3.1 The Singular Value Decomposition

The Singular Value Decomposition (SVD) is a door-opener to a lot of practical algorithms, and
very much used in modern applications of linear algebra.

The reduced form SVD of a general m� n matrix A is

A = U�V 0 =
rX
i=1

�iuiv
0
i; (11)

where

U =

24 j j j
u1 u2 ::: ur
j j j

35 ; V =
24 j j j
v1 v2 ::: vr
j j j

35 (12)

have orthogonal columns,

U 0U = I(r);

V 0V = I(r); (13)

and r = rank (A).

The r� r diagonal matrix � contains the so-called singular values of A. These singular values
are the square root of the non-negative eigenvalues of A0A, or AA0 (Note that the matrices U and
V may be extended to full m�m and n� n orthogonal matrices and � to an m� n matrix, as
shown in N&W, p. 598. We do not assume or need this below).

There are a few things to check here:

� The matrix A represents a linear transformation from Rn ! Rm and, similarly, A0 a linear
transformation from Rm ! Rn.

� v1; v2; :::; vr 2 Rn and u1; u2; :::; ur 2 Rm.
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� U and V consist of the eigenvectors of AA0 and A0A that correspond to non-zero eigenvalues,
(AA0)U = U�2 and (A0A)V = V �2.

� The columns of V span an orthogonal basis for N (A)? � Rn, and the vectors in U an
orthogonal basis for the range of A, R (A) � Rm.

The matrix
A+ = V ��1U 0 (14)

is called a pseudo-inverse or a generalized inverse of A, and is the most famous member among
a large number of generalized inverses. This particular generalized inverse is called the Moore-
Penrose inverse of A.

Exercise: Prove that A+A acts as the identity matrix on N (A)?, and AA+ as the identity
matrix on R (A) (Hint: Use that all vectors x 2 N (A)? may be written x = V s, s 2 Rr, and
similarly z = Ut; t 2 Rr for z 2 R (A) ).
You could consult a textbook (E.g. [2] or your own linear algebra book) in order to brush this

up. It is not so easy to grasp, �or to remember!

1.3.2 The solution in terms of the SVD

Given the SVD of A, the unique solution with the smallest norm of Eqn. 8 is

x� = A+b = V ��1U 0b =
rX
i=1

u
0
ib

�i
vi: (15)

(Prove this yourself by showing that A0A (A+b) = A0b!).

In Eqn. 15, we assume that the singular values are ordered according to their size, that is,

�1 � �2 � � � � � �r: (16)

This is the opposite ordering from what we have been using for eigenvalues.

Contrary to what you learn in the linear algebra courses, determining the rank of a big matrix
is far from trivial. If the singular values decrease gradually to 0, it is quite di¢ cult to say where
to stop (perhaps when �i < 10�16?) and de�ne the rest to be 0. The nice thing about Eqn. 15
is that we can add one term at a time and stop when the solution starts to get unstable. Small
singular values magnify errors in b, U or V , and this case is called an ill-conditioned problem.

It seems to be an inherent property of real life problems of some size that they all tend to be
ill-conditioned. This will be discussed later for Inverse Problems.

1.3.3 A worked example

The following simple and somewhat unrealistic example shows how the SVD works. We have a
large and very noisy data set of a function of one variable (y). The values of y range between 0
and 1, and the idea is to extract the function by �tting a polynomial. Typical data are shown
in Fig. 1, and if this has been real data set, we would not even think of �tting something else
than a constant value, or at most a straight line. The data are produced by adding independent
normally distributed noise with standard deviation equal to 0.6 to the function values. Let us
nevertheless take a very bold attitude and try to �t a polynomial of order 60 (!) by just running
the Matlab functions poly�t and polyval:
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Figure 1: Simulated 600 data points with some underlying function added to a lot of noise.

p = polyfit(y,b,60);

Y = polyval(p,y);

plot(y,data,�.�,y,Y);

In this case, the factors are the various powers of variable y, a =
�
1; y; y2; � � � ; y60

	
and the

weights x are the coe¢ cients in the polynomial,

�̂ = x1 + x2y + x3y
2 + � � �+ x61y60: (17)

As expected, the result is really not that great, as Fig. 2 shows. Also Matlab protests and
warns us that the matrices involved are close to singular. The program suggests removing some
data points, or do some centering and scaling of the data. Nothing of this would actually help,
�the obvious cure is clearly to reduce the order of the polynomial. But let us not give up that
fast. We stick to 60th order and form the factor matrix A of dimension 600� 61 (61 factors and
600 experiments).

A =

26664
1 y1 y21 � � � y601
1 y2 y22 � � � y602
...

...
...

1 y600 y2600 � � � y60600

37775 ; (18)

and the data vector b = (b1; b2; � � � ; b600)0.
We are then faced with the problem of �nding the best loads x = (x1; x2; � � � ; x61)0 to the data,

that is, solve the LS problem,
x� = arg min

x2R61
kAx� bk22 : (19)

Let us consider two possibilities:

� Use of the SVD

� Use of the normal equations
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Figure 2: Data and 60th order polynomial �tted by poly�t in Matlab.
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Figure 3: The singular values of the A-matrix. The machine accuracy seems to be reached after about
30 singular values, but the singular values never become exactly 0.
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Figure 4: SVD solutions truncated at the term indicated. All polynomials have order 60 (The data set
here di¤ers from the above).

Both are straightforward to program, the SVD even as simple as [U Sigma V] = svd(A)! The
rank (A) computed by Matlab is equal to 26, and this seems to be in rough agreement with a plot
of the singular values shown on Fig. 3. It is tempting to use the solution on the SVD-form,

x� = V ��1U 0b =
rX
i=1

u
0
ib

�i
vi: (20)

where we include one term at a time. This is displayed in Fig. 4, where the result is plotted every
eight term. The graphs in the middle show some similarities, and this is even true for the graphs
at the bottom, although using more terms in Eqn. 20 than the rank is not very meaningful.
The SVD solution with r = rank (A) terms, the Normal equation solution, and the (up to now)
unknown true function are shown in Fig. 5. The �nal plot, Fig. 6 shows the SVD solution and
the �t of a polynomial of order r. The solutions are about equally good, but we have not tried
to optimize this further. By running the program with di¤erent data, the optimal SVD solution
seems, on the average, to be slightly better than the Normal Equation solution. The reader should
be warned that the, after all, civilized behaviour of these results is in part due to Matlab�s very
carefully coded numerics!
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Figure 5: Data and all polynomials: Red: SVD solution with r terms; Blue: Normal Equations; Green:
Underlying exact function.
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Figure 6: Red: SVD solution of order r = rank (A). Blue: A simple polynomial �t of order r. Green:
Input function.
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2 Non-Linear Least Square Problems

In the general non-linear least square case we have a vector-valued function, h(x) 2 Rm where
x 2 Rn, and we want to �nd the minimum of

f(x) =
1

2
kh(x)k22 =

1

2

mX
i=1

hi(x)
2 =

1

2
h(x)0h(x): (21)

The simple Example 10.1 in N&W on p. 247�249 is of this form.

All the gradients of the various components in h make up what is called the Jacobian matrix
of h, de�ned by

J(x) =

�
@hi
@xj

(x)

�
i=1;:::;m;
j=1;:::;n

=

26664
� rh1 (x) �
� rh2 (x) �

...
� rhm (x) �

37775 : (22)

Recall that we assume that rhi are n-dimensional row vectors. By taking derivatives term by
term, we easily obtain (do it yourself!) that the gradient and the Hessian of f are

rf(x)0 = J 0(x)h(x); (23)

r2f (x) = J 0(x)J(x) +
mX
i=1

hi(x)r2hi(x); (24)

where
�
r2hi

	
are the Hessian matrices for hi , i = 1; � � � ;m .

Note that if hi(x) are linear functions, say h(x) = Ax� b, then f(x) = 1
2 kAx� bk

2
2 , and

rf(x)0 = A0(Ax� b) = A0h(x);
r2f(x) = A0A: (25)

We observe that A corresponds to the Jacobian, J , whereas the Hessian in the general non-linear
case gets an additional term

B =
mX
i=1

hi(x)r2hi(x): (26)

If the minimization leads to small values of hi(x), or the problem is nearly linear such that
r2hi(x)-s are really small, the �rst term in r2f(x) will dominate and

r2f(x) � J(x)0J(x): (27)

This is utilized in Gauss-Newtons method. We remember that the iteration step in Newton�s
method could be written

r2f(xk)(xk+1 � xk) = �rf(xk)0; (28)

or, in terms of the search direction, pk,

r2f(xk)pk = �rf(xk)0: (29)

In the Gauss-Newtons method, the search direction pk for a line search, xk+1 = xk + �kpk, is
obtained by approximating the Hessian by the �rst part of the sum in Eqn. 24,

J(xk)
0J(xk)pk = �J(xk)0h(xk): (30)
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Figure 7: This �gure, copied from the documentation of Matlab Optimization Toolbox, shows that
Gauss-Newton is very e¢ cient when the last part of the Hessian matrix may be ignored.

We observe from the previous section that this is the same as solving the linear LS problem

min
p
kJ(xk)p+ h(xk)k2 : (31)

Practical experience has shown that if J(x) has full rank and h(x) really gets small close to
the solution, J(xk)0J(xk) becomes a good approximation to the exact Hessian and Gauss-Newton
converges about as fast as full Newton. This is illustrated for Gauss-Newton on the Rosenbrock
Banana Function on Fig. 7, copied from Matlab Optimization Toolbox documentation. The
guide says that only 48 function evaluations were needed, even when the gradient was computed
numerically. If, on the contrary, J(x) is rank de�cient, or the residuals (the components of h) are
not small, the performance may be very poor. This is discussed in N&W, p. 256�257.

Whereas Gauss-Newton is a line search method, it is also reasonable use the same approximate
Hessian in a trust region setting. The quadratic approximation to the objective is then

m (p) = fk +
�
J
0
khk

�0
p+

1

2
p0
�
J
0
kJk

�
p; (32)

and with a spherical domain D with radius �, we have the same type of model problem as before,

p� = argmins2Dm (p) : (33)

If J(xk) has full rank, the solution of 33 will be identical to the Gauss-Newton solution,

pGN = �
�
J 0kJk

��1 �
J 0khk

�
; (34)

as long as kpGNk � �. Otherwise, the solution has to be on the boundary of D and obtained
from �

J 0kJk + �kI
�
p = �J 0khk: (35)
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with a value on �k that ensures kpk = �. Note that in this case, the solution of the constrained
problem is straightforward (in principle): J 0kJk � 0, and J 0kJk + �I > 0 for all � > 0. Moreover,
kp��k �!

�!1
0.

This trust region algorithm is called Levenberg-Marquardt�s method, and is the standard
method for non-linear LS problems and one of the algorithm implemented in Optimization Tool-
box in MATLAB.

If it is possible to compute the matrix B in a reasonable way, it will in general be preferable
to use it, as discussed in [1]. Such methods are implemented in the NAG library of numerical
algorithms.
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