TMA 4180 Optimeringsteori

Minimum Cost Network Flow Analysis Using LP

Harald E. Krogstad

March 2007

An arc is characterized by

- Prize pr. flow unit along arc
- Lower bound (for initiating transport)
- Upper bound (capacity)

Sink

Source
Sources: (Production/providers)

- Capacity
- Cost pr. unit delivered to the network

Sinks (Consumers/receivers):

- Capacity
- Income to network from deliveries

Source: Production $b>0$.
Sink: Absorption, $b<0$.

Variables $x=\left\{x_{i}\right\}, x_{i} \geq 0$. (flow in the arcs)
NB! 2 variables for each arc: 2 directions

Node:

$$
\sum_{\text {inflow }} x_{i}=\sum_{\text {outflow }} x_{i}
$$

Source/Sink: $\quad b_{s}=\sum_{\text {outflow }} x_{i}-\sum_{\text {inflow }} x_{i}$

A balanced network: $\sum_{\text {Sourcessinks }} b_{s}=0$

Price for delivery: $f(x)=\sum_{\text {arcs }} c_{i} x_{i}=c^{\prime} x$

Cost for one unit along arc "i": $\quad\left\{c_{i}\right\}$
Upper bound on capacity for arc "f": $\left\{u b_{i}\right\}$
Lower bound on capacity for arc "i": $\left\{l b_{i}\right\}$
The LP formulation:

$$
\begin{gathered}
\min _{x} c^{\prime} x \\
\sum_{\text {outflow }} x_{i}-\sum_{\text {inflow }} x_{i}=b_{n}, n=1, \ldots, \text { Nodes, } \\
l b \leq x \leq u b
\end{gathered}
$$

$$
\begin{gathered}
\min _{x} c^{\prime} x \\
A_{e q} x=b_{e q} \\
l b \leq x \leq u b
\end{gathered}
$$

The matrix is a sparse matrix with only $-1,0$, and -1

Simsys_sparse

(3) MATLAB Central

An open exchange for the MATLAB and Simulink user community
http://www.mathworks.com/matlabcentral/

Per Bergström

Luleå University of Technology

RANDOM NETWORK GENERATION

Prescribe:

- Numbers of sources and sinks
- Max number of arcs around one node
- Min number of arcs around one node
- Random upper bound
- Distribution of nodes
- Interactive network modification
- Random costs

The algorithm provides:

- Number of nodes
- Upper bound of capacity
- $A_{\text {eq }}$ matrix
- Balanced production/consumption at the sources and sinks
[Aeq,beq,lb,ub,c]=simsys_sparse(100);
Solution in Matlab: $x=\operatorname{linprog}(c,[],[], A e q, b e q, \mid b, u b)$

RANDOMLY GENERATED NETWORK

The LP-problem:

- Number of arcs: 304
- Lower bounds: 0
- Upper bounds:
- Equality constraints: 48
$\mathrm{A}_{\text {eq }}$-matrix:

Costs

Practical Optimization: A Gentle Introduction
 John W. Chinneck
 Systems and Computer Engineering
 Carleton University
 Ottawa, Ontario K1S 5B6
 Canada
 http://www.sce.carleton.ca/faculty/chinneck/po.html

(very soft introduction ©)

