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Quadratic Programming (QP) is the next step up from Linear Programming. This material

is somewhat technical and not very well suited to lecture on the blackboard. However, many

problems may be formulated as QP problems, and QP constitutes the iteration step in the highly

efficient and quite popular Sequential Quadratic Programming (SQP) methods. A certain basic

knowledge of QP problems is therefore valuable.

The material in this note is also found in N&W, Chapter 16, and covers what we consider to be

the curriculum for the present course.

Some of the arguments are shortened, and the note does not treat the numerical aspects in any

great detail.

There is also an accompanying set of transparencies covering QP that will be used in the lectures.

1 The QP Problem

We are now considering problems where the objective function is quadratic,

 () =
1

2
0+ 0 (1)

and where  is a symmetric ×  matrix. We recall that

∇ ()0 = +  (2)

and if there are no constraints and   0, the unique solution is of course ∗ = −−1.
However, in the present case, we first of all have constraints, and, secondly,  may not be positive

definite, not even semi-definite. Nevertheless, since  is continuous, we always have solutions as

long as the feasible domain is bounded, see Fig. 1.

Exactly as for LP problems, the feasibility domain, Ω, is also in this case defined in terms of linear

equality constraints,

0 =   ∈ E  (3)

and linear inequality constraints,

0 ≥   ∈ I (4)

Like in the LP case, Ω is convex, and  will be convex as long as  ≥ 0 (which may not be the
case).

Locally, even non-linear smooth constraints will look linear, e.g.

0 =  () ≈  (0) +∇ (0) (− 0)  (5)

Similarly, the quadratic form  () could be a local approximation of a more general objective

function. Thus, analyzing QP problems is useful also from a more general viewpoint.

Inequality constraints turn out to be somewhat troublesome, so we shall start with the simpler

case of equality constraints only.
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Figure 1: Left : If the  matrix is indefinite, there may be isolated local minima (bullets) and

maxima (squares). Right : If   0, both  and Ω are convex, and we have a (unique) global

minimum.

2 QP Problems with Equality Constraints

The case with only equality constraints can always be reduced to the following:

min  ()

 =   has full rank    (6)

The reduction to a linear equation with full row rank is similar to the LP case.

It turns out to be several routes to the solution of this problem. If one did not know anything

about optimization, the most obvious way would be to work on the linear system and try to get

rid of some of the variables. Since the matrix has rank , it is possible, after renumbering the

variables, to bring the matrix and the RHS into what is called the Reduced Row Echelon Form:

h
̃ ̃

i
=

⎡⎢⎢⎢⎢⎣
1 0 · · · 0 ̃1+1 · · · ̃1 ̃1

0 1
...

...
... ̃2

...
. . . 0

...
...

...

0 · · · 0 1 ̃+1 · · · ̃ ̃

⎤⎥⎥⎥⎥⎦ (7)

Thus, the new 1, · · · ,  may be expressed as linear combinations term of +1 · · ·   and ̃.

By inserting this into the objective function, the number of variables are reduced from  to − ,
and the problem has become a quadratic unconstrained problem.

For another approach, let  be a matrix consisting of basis vectors for the null-space, N (), of

. We leave to the reader to prove that Ω, if non-empty, may always be written as:

Ω = {;  = } = ©0 + ; 0 =   ∈ R−ª  (8)

One way to proceed is therefore obvious: First find an 0 so that 0 = , and then determine a

basis for N (). Then insert  = 0 +  into  () and obtain an unconstrained problem in 
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∈ R−:

 () =  (0 + )

=
1

2
(0 + )0 (0 + ) + 0 (0 + ) (9)

=
1

2
0̃+ ̃0+ const.

where

̃ =  0

̃ =  0 (0 + )  (10)

The only candidates for minima of the unconstrained problem

min
∈R−

 () (11)

are the solutions ∗, such that
̃∗ = −̃ (12)

which result in the following three cases:

1. A unique solution if ̃  0,

2. Infinitely many solutions if ̃ is singular, as long as it is positive semi-definite and ̃ ∈
R
³
̃
´
,

3. No solution if ̃ is not positive semi-definite, or ̃ ∈ R
³
̃
´
.

It is even possible to solve the KKT-equations for the problem in 6 directly. The Lagrange function

is

L ( ) = 1

2
0+ 0− 0 (−)  (13)

and the KKT equations are simply

∇L ( )0 = + +0 = 0 (14)

 =  (15)

These equations may be collected into the combined system∙
 0

 0

¸ ∙




¸
=

∙ −


¸
 (16)

The coefficient matrix is non-singular if  has full rank and  is positive definite on N () (Try

to prove this yourself before you look at N&W Lemma 16.1, or the lemma stated on p. 17 in

the KKT-note). If this is the case, we therefore have a unique solution which also is a global

minimum. This is in accordance with Point 1 above, since  is positive definite on N () if and

only if ̃ =  0  0.

The solution for ∗ is obtained from Eq. 14 if we know ∗:

∗ = − ¡0¢−1 (+∗)  (17)

Numerical algorithms and an explicit formula for the inverse of the coefficient matrix in Eqn. 16

are described in N&W, Sec. 16.2 and 16.3.

3



3 QP Problems with Inequality Constraints

Inequality constraints spoil the elegant theory above completely!

If we have constraints of the familiar form

 = 

 ≥ 0 (18)

we could try to use elimination to the reduced Echelon form, as above,

[  ]

∙
1
2

¸
=  (19)

However, this just leads to

(−2) ≥ 0  ∈ I1
(2) ≥ 0  ∈ I2 (20)

that is, the same number of inequalities as before.

Let us then consider the general problem

min


½
1

2
0+ 0

¾


0−  = 0  ∈ E  (21)

0−  ≥ 0  ∈ I

We assume that all equality constraints are linearly independent and let A () denote the active
constraints at the point . This is called the active set at .

Show that the KKT-conditions are

+ −
X

∈A()
 = 0 (22)

0 =   ∈ A ()  (23)

0    ∈ I\A ()  (24)

 ≥ 0  ∈ I ∩A ()  (25)


¡
0− 

¢
= 0  ∈ I ∪ E  (26)

Recall that the LICQ condition is not necessary for linear constraints.

If 0 is a KKT-point for the full problem, it is also a KKT-point for the reduced problem

min


½
1

2
0+ 0

¾


0 =   ∈ A (0)  (27)

(Proof left to the reader!). The reduced problem is a QP problem with equality constraints.

If we have an active set A consisting of E and some of I, and have found a KKT-point 0 for the
reduced problem, it is easy to check the full KKT-conditions in Eq. 22—26. If these are fulfilled,

we have a KKT-point for the full problem. We need to find out whether this is a minimum. This
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is always true if the problem is convex by the Convex KKT Theorem. Otherwise, the next step

would be to check the 2nd order conditions: Form the matrix  consisting of the gradients of

the active constraints and investigate whether  0 is positive (semi)definite, where  is a basis
for N ().

The good news is therefore that if we know A (∗), we will be able to find a solution. The not so
good news is that the number of combinations of active constraints grows exponentially with the

number of constraints!

4 Active Set Methods

N&W contains a rather extensive treatment of iterative methods that try to adjust the active set

towards the solution. We shall only give a brief discussion here, also assuming that  ≥ 0 so that
we have a convex QP problem with all solutions (if they exist) collected in a convex set.

Assume we are at a point 0 ∈ Ω. We then choose a working set of constraints, W, so that

E ⊂W ⊂ A (0)  (28)

(We always need to include E in W, if not, we will not be in Ω!). Let W be the corresponding

matrix of gradients of the constraints and solve the equality constrained reduced QP problem

min  (0 + )

W (0 + ) = W  (29)

If  turns out to be 0 we have to check whether 0 could be the full solution. If not, we need to

change the working set in some way (see below).

If  6= 0, we consider  as a search direction and determine  ≤ 1 as the maximum value where

1 = 0 +  ∈ Ω (30)

If  = 1, we are at a KKT-point for the reduced problem (the solution of 29), and since 1 is in

Ω, we also need to check the KKT-equations for the full problem. Otherwise, we have run into

new inequality constraints, which we now include in W and continue as above from 1.

Sooner or later we end up in a case where  = 0 at a point ∗ and with an active set W∗. This
point satisfies

∗ + −
X
∈W∗

∗  = 0 (31)

Let us set the Lagrange multipliers for the (inequality) constraints that are not in W∗ to 0. If
now

∗ ≥ 0 (32)

for all  ∈ W∗ ∩ I, we have reached a KKT-point for the full solution (check Eq. 22 — 26!).
However, if some of these multipliers are negative, we throw the corresponding constraints out

from W∗ and solve a new reduced problem in the form of Eqn. 29.

It may be shown (Theorems 16.5 and 16.6 in N&W) that this will decrease the objective further.

In order to start the method, that is, to identify a feasible point 0 ∈ Ω, it may be necessary to
carry out a Phase 1 problem as in the LP case.
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The Active Set algorithm is listed on p. 472 in N&W, and numerical aspects are given on pp.

477 — 480. Each iteration involves minimization over a set

{0 + }  (33)

where  contains a basis for the null-space of the matrix of gradients of active constraints. Since

W only changes with a few constraints from iteration to iteration, the update of  may be done

numerically efficient.

QP for indefinite problems will not be discussed here, and is only very briefly discussed in the

2nd Ed. of N&W.

4.1 Example

Figure 2 illustrates an example from N&W, pp. 474 — 476 where   0. There are 5 inequality

constraints denoted by  , · · · ,  in the figure. The red gradient arrows show the direction

into the positive domains, and the constraints define a bounded, feasible domain Ω. The green

arrows indicates the direction of ∇.

1. We start at the point 0 = (2 0) with W = {}. Now, 0 is a KKT-point for the
corresponding reduced problem, but this brings us nowhere, since the feasible set for the

reduced problem just contains 0 ( = 0)!

2. We choose in the next step to abandon the constraint associated with the most negative

Lagrange multiplier (here this is ) and move along  (W = {}). This brings us from 1

= (2 0) to 2 (A full step,  = 1).

3. This point is a KKT point for the new reduced problem, but not for the full problem, since

∇ and ∇ points in the opposite directions (  0).

4. No change is possible if we keep  inW, so we abandon this as well and move from 3 = 2

in the negative gradient direction with W = ∅. However, we can’t continue up to  = 1

since we, on our way to the unconstrained global minimum for , meet  and have to stop

at 4

5. Finally, we include  in W and continue to 5, which turns out to be the solution ∗.

There are different roads towards the solution: What happens if we abandon both constraints in

1?

5 The Gradient Projection Methods

The traditional gradient projection method admits non-linear objective functions as long as the

constraints are linear:

min  () 

0 =   ∈ E  (34)

0 ≥   ∈ I
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Figure 2: Active Set example. See text for explanation.

Assume that we are in a point  ∈ Ω with a corresponding set of active constraints A and the

(full rank) matrix of gradients . A local feasible domain is then defined as

Ω = { ;  = } = { +N ()}  (35)

Moving around in Ω does not violate Ω as long as we do not encounter new constraints. The

gradient in  is

 = ∇ ()0  (36)

but in general  −  will not be in Ω for any  6= 0. We therefore project the gradient onto
N () and consider the 1-D problem

min



¡
 − N ()

¢
 (37)

 − N () ∈ Ω (38)

Note that the projection is the vector in N () closest to  (Prove that the projection,  →
N () ∈ N () is defined by the projection operator

N () =  −0
¡


0


¢−1
 (39)

by solving the equality constrained QP-problem

min

k − k2 

 = 0) (40)
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Figure 3: The non-linear gradient projection method where one searches for a minimum along

the continuous broken line in each iteration.

The advantage of this approach is that many constraints may be changed for each iteration, but

the disadvantage is the computations of the projection operators.

N&W describes an interesting variant which works for simple bound constraints in the QP-case

(as far as I see, one can use the method for any non-linear objective function as long as the

constraints are simple bounds):

min  () 

 ≤  ≤  (41)

The bounds are to be understood component-wise, and include, if necessary, −∞ and ∞.
Consider the following (very trivial!) non-linear projection operator  defined by

 () =

⎧⎨⎩
  ≤ 
     
  ≤ 

(42)

We start at 0 and compute the continuous broken line path

 () = 
¡
0 − ∇ (0)0

¢
 (43)

as shown in Fig. 3. Of course, all  () ∈ Ω, but the path will sooner or later stop. Let  be the
first local minimum along the path,

 = argmin
()

 ( ())  (44)

From this point, the simplest would be to just compute a new gradient and repeat the operation.

It is also possible to possible to do an approximate Active Set iteration using the already active

bounds as the active set.
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This latest version of the gradient projection algorithm turns out to have a wider applicability

than one should expect. In fact, the so-called Wolfe’s Dual of a convex QP problem, treated

below, may always be formulated as a simple bound-constrained problem.

6 Wolfe’s Duality for Convex Problems

Before we start, it is useful to recall the KKT Theorem for convex problems, as discussed in the

KKT-note. First of all, if

Ω = {; () = 0  ∈ E  () ≥ 0  ∈ I} (45)

where () for  ∈ E are linear functions, and () for  ∈ I are concave, then Ω is convex. We
could, alternatively, require that all constraints written as inequalities are concave. This would

imply that equality constraints had to be linear. If, in addition, the objective function  () is

convex, the Convex KKT Theorem then ensures that all KKT-points are global minima. The

KKT-equations take the form

() ∇ (∗) =P∈I 
∗
∇ (∗) 

() ∗  (
∗) = 0

()  (
∗) ≥ 0

() ∗ ≥ 0
(46)

In linear programming the Dual Problem entered in a natural way by letting  and  switch places,

whereas the KKT-equations remained the same. Unfortunately, the situation is more complex

for non-linear problems, but for convex problems there is a simple version of duality called the

Wolfe’s Dual Problem. In N&W 1st Ed. this was the problem that appeared from nowhere in

Section 16.8 (Eqn. 16.56a). In N&W 2nd Ed. it is hardly mentioned.

We now consider a convex problem where the Lagrangian is written

L( ) = ()− 0() = () + 0 (−())  (47)

() = (1() 2() · · ·  ())0 (48)

and all constraints are rewritten as inequality constraints. Since we are really interested only in

cases where  ∈ Ω and  ≥ 0, L will, as in the proof of the Convex KKT Theorem, be a sum of

convex functions with positive weights, and therefore itself be convex in .

After this introduction, it is possible to consider a simple version of duality, namelyWolfe’s Dual

Problem:

max


L( )

∇L( ) = 0 (49)

 ≥ 0

Note that for this problem, all constraints for  are contained in the first equality constraints,

and that all constraints for  are linear.

Theorem: Assume that  and - are convex and differentiable and that 
∗ is a KKT point

(and hence solves the primal problem). Then ∗ and ∗ from the equations 46 will solve Wolfe’s

Dual Problem. Moreover,

(∗) = L(∗ ∗) (50)
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Proof: Since the KKT-equations guarantee that

∇L(∗ ∗) = ∇(∗)− ∗0∇(∗) = 0 (51)

for some ∗ ≥ 0, the pair (∗ ∗) will be a feasible point for problem (49). The KKT-equations

also imply that

∗ (
∗) = 0  = 1 · · ·  (52)

and this in turn shows that (∗) = L(∗ ∗).
If ( ) is another feasible pair for Eqn. 49, the Lagrangian will still be convex in  since  ≥ 0,
and, as in the proof of the Convex KKT Theorem,

L(∗ ∗) = (∗)

≥ (∗)−
X
∈I

(
∗)

= L(∗ ) (53)

≥ L( ) +∇L( ) · (∗ − )

= L( )

(Recall that ∇L( ) = 0 is the feasibility requirement on ( ) in Eqn. 49).
We leave to the reader to prove that Wolfe’s dual is equivalent to the regular dual problem for

linear programming problems.

It does not generally hold that the ”dual of the dual is the primal” and the theorem does not

guarantee that a solution of the dual is a solution of the primal. Nevertheless, this is true for the

special case of a convex QP problem considered below.

The Wolfe’s Dual problem to the primal problem

min


1

2
0+ 0   0

 ≥  (54)

is

max


1

2
0+ 0− 0(− )

+ −0 = 0 (55)

 ≥ 0

Since  is non-singular, we may solve for  right away:

 = −1
¡
0− 

¢
 (56)

which leads, after some manipulations, to a quadratic problem in :

max
≥0

½
−1
2
0−10+ 0

¡
+−1

¢− 1
2
0−1

¾
 (57)

Fortunately, changing this to a minimalization leads to the reduced convex problem

min
≥0

½
1

2
0−10− 0

¡
+−1

¢¾
(58)
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Note that the dimension of the reduced problem is equal to the number of inequalities in  ≥ ,

and can be much less than the dimension of . Since the constraints are now simply  ≥ 0, and
the gradient of the objective function is

−10− −−1 (59)

the problem may be easily be attacked by the non-linear gradient-projection method.

Finally, ∗ is found from
∗ = 0∗ −  (60)

However, we have not showed that (∗ ∗) is a solution of the primal problem, Eq. 54, having
KKT equations

+ −0 = 0 (61)

−  ≥ 0 (62)

0 (− ) = 0 (63)

 ≥ 0 (64)

The first and last equations hold trivially from the dual problem (55), whereas Eq. 62 and 63

both follow from the KKT-equations of the reduced problem, Eq. 58.

The material for the last section is adapted from the book of Fletcher: Practical Methods of

Optimization, 2nd Edition, Wiley, 1996.

Duality for non-linear problems is briefly discussed in N&W, 2nd Ed., Sec. 12.9.
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