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QUADRATIC PROGRAMMING BASICS 
H. E. Krogstad 

Spring 2008/Rev. 2012 
 
Quadratic Programming (QP): 
 
 Common form for a lot of problems 
 The iterative step in Sequential Quadratic Programming (SQP) methods 

 
THE QP PROBLEM 
 
We are considering problems where the objective function is quadratic,  

 

  1 , symmetric.
2

q x x Gx d x G    
  
For the non-constrained problem we know  

  ,q x Gx d     
where 

1 when 0.x G d G     
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In general, G will not necessarily be positive definite, not even semi-definite. 
 
The feasibility domain  is defined in terms of  
 
 linear equality constraints, 

, ,i ia x b i  E  
 linear inequality constraints,  

, .i ia x b i  I  
 
NOTE: 
 
 is convex 

 
 The objective function will be convex if 0G  . 
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Contours of the quadratic
objective function  
(convex case) 



Absolute minimum
Equality  
constraint

Inequality  
constraints 
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Indefinite                                         Positive definite 

+
+– –
 

min

 
 

An indefinite matrix G may lead to several local minima/maxima! 
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THE QP PROBLEM WITH EQUALITY CONSTRAINTS ONLY 
 

This case can always be reduced to the following: 
 

minqx 

Ax  b,

A has full rank r  n.
 

 
    0 0; ; , contains a basis for , .n rx Ax b x Zu Ax b Z A u R       N  

 
1. Solution by Eliminating Unknowns 

 
From the linear system of constraints, express r  variables in terms of the remaining n r  

unknowns. Insert this into the objective function and solve the unconstrained problem in the 
remaining n r  variables! 
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2. Solution by the Null-Space Method 
 
Find an 0x  , and a basis for the null space of A . Insert 0x x Zu  : 

         

 

0 0 0 0

0

1
2

1 const. , , .
2

f u q x Zu x Zu G x Zu d x Zu

u Gu d u G Z GZ d Z Gx d





      

           

  0.f u Gu d   
 

Three cases, depending on :G  
 
1)  A unique solution if the matrix is positive definite  

 
2)  Infinitely many solutions if G  is singular, as long as it is positive semi-definite and 

d̃ ∈ R G̃  
3)  No solutions if it is not positive semi-definite (or  d R G  ) 

. 
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3. Solving the KKT-equations 

 
The Lagrange function is 

   1, ,
2

L x x Gx d x b Ax        
 and hence, 

 , ' 0,
.

xL x Gx d A
Ax b
     

  

 Collected into a system:  

G A ′

A 0

x




−d

b
.

 
  
Lemma 16.1: The coefficient matrix of the system is non-singular if A has full rank and G is 
positive definite on the null-space of A.  
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Assume that A has full rank and G is positive definite on the null space of A, that is, 
 

   ' ' ' ' 0 0.Zu G Zu u Z GZu u Gu u      
 
Then (x*,*) is a unique KKT point and a global minimum (Follows from the Null-Space 
Method, which then solves a strictly convex problem). 
 
There are many ways of solving the KKT system in this case. However, if x* is known,  
 

   1* ' *AA A Gx d     
 
If * is known, we reduce the over-determined system 
 

 ' *Gx d A
Ax b

  

  
to a (non-singular) system with n unknowns (Simple if G > 0!)  
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INEQUALITY CONSTRAINTS 
 
 

 
 
Let us consider the general problem 
 

1min ,
2

' 0, ,
' 0, .

x

i i

i i

x Gx d x

a x b i
a x b i

   
 
  
  

E
I  

 
We assume that all equality constraints are linearly independent. 
 
 Let as A   or  Ax    denote the active set of constraints in x  

Inequality constraints spoil the elegant theory above completely!
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The KKT-conditions: 

 

 
 
 

 

0,

, ,

, \ ,

0,

0,

i i
i x

i i

i i

i

i i i

Gx d a

a x b i x

a x b i x

i x

a x b i









  

 

 

  

   


A







A

I A

I A

E I  
(Recall that the LICQ condition is not necessary for linear constraints). 
 
If *x  is a KKT-point for the full problem, then   *x    and a corresponding subset of the 
Lagrange multipliers is also a KKT-point for the reduced problem  

 

1min ,
2

,

x

i i

x Gx d x

a x b i x 

   
 

 A  

  Setting 0 for all  i i x  A . 
 
 



TMA 4180 Optimeringsteori, vår 2008/2012        11 

 
 The reduced problem is a QP problem with equality constraints. 

 
 
 If we have an active set  A   and have found a KKT-point  x ∗  for the reduced problem, it is 

easy to check the KKT-conditions for the full problem. 
 
 
 The next step would be to check the 2nd order conditions: Form the matrix A consisting of 

the gradients of the active constraints and investigate 'Z GZ , where Z  is a basis of  NA  
( Unless 0G  , in which case KKT-points are global minima) 
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ACTIVE SET METHODS 
 

1.   Assume we stay at a point 0x   .  
 
2.   We choose a working set  W   so that 

E ⊂ W ⊂ Ax 0 .
 

 
 3.  Let WA   be the corresponding matrix of gradients and solve the (equality constrained) 
reduced problem 

 
 

0

0

min ,

.



 W

q x p

A x p bW

 

 
4.  If  p  turns out to be 0, we have to check whether 0x  could be the full solution.  
 
5.   If  p ≠ 0  , we consider p as a search direction and determine   ≤ 1   as the maximum value 
where  
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x 1  x 0  p ∈ .
 

 
6a.  If  1  , we are at a KKT-point 1x  for the reduced problem ( 1x !). We then check 
whether the full KKT-equations are satisfied (in which case we have a solution). 
 
6b. Otherwise, new inequality constraints have become active, which we now include inW , and 
continue as above from 1x . 
 
When this stops, we have a KKT-point  *x   and an active set  W ∗  for the reduced problem 
satisfying  
 

Gx ∗  d − ∑
i∈W ∗

 i
∗ai  0.

 
 
 
7a.  Set the Lagrange multipliers for the constraints that are not in  W ∗   to be 0.  
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If  

 i
∗ ≥ 0  

 
for all  i ∈   W ∗ ∩ I  , we have reached a KKT-point for the full problem and that needs to be 
checked (finished if we have a convex problem). 
 
 
7b.  However, if some of  the Lagrangian multipliers are negative, we throw the corresponding 
constraints out from W ∗  and solve the new reduced problem as in (3). 
 
(It may be shown, Theorems 16.5 and 16.6 in N&W, that this will decrease the objective 
further!). 
 
Note: 
 
 In order to start the method, that is to identify a feasible point x 0 ∈  , it may be necessary 

to carry out a Phase 1 problem as in the LP case. 
 
 The Active Set algorithm is listed on p. 472.  Numerical aspects shown on pp. 477 –  480.  
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(Copied from Ed. 1. See p. 462, 2nd Ed. ) 
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Example 16.3: 
 

 
2

2
1 2

1 2

1 2

1 2

1

2

5min 1
2

2 2 0,
2 6 0,
2 2 0,

0,
0.

x x x

x x
x x
x x

x
x
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THE GRADIENT PROJECTION METHODS 
 
The traditional gradient projection method admits non-linear objective functions as long as the 
constraints are linear: 

min fx ,

ai
′x  bi , i ∈ E,

ai
′x ≥ bi , i ∈ I.

 
 
We are in a point  x k ∈    with a corresponding set of active constraints  A k   and the (full rank) 
matrix of gradients  A k  .  
 
A (local) feasible domain is then 
 

    ; .k k k k kx A x b x A    N  
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The gradient in  x k   is 
gk  ∇fx k 

′ ,   
 but in general  x k − gk   will not be in  k   for any   ≠ 0  .  
 
We therefore project the gradient onto  NA k    and consider the 1-D problem 

min


fx k − PNA k gk ,

x k − PNA k gk ∈ .
 

 

PNA k   I − A k
′ A kA k

′ −1 A k  
 

 We find the operator by solving the equality constrained QP-problem 
2min ,

0.
x

g x

Ax
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THE NON-LINEAR PROJECTION METHOD 
 

minqx ,

l ≤ x ≤ u.  
 

  
Consider the following (and obvious!) non-linear projection operator  
 

 
,
,
,

i i i

lu i i i ii

i i i

l x l
P x x l x u

u u x


  
 

 

We start at  x 0   and compute the continuous broken line path 

xt   P lu x 0 − t∇qx 0 .  
xt  ∈   
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x0-tg0

Plu(x0-tg0)


x0

x1

x2

l1 h1

l2
l3

h2

h3

 
 

 Let  x c  be the first local minimum along the path.  
 From this point the simplest would be to just compute a new gradient and repeat the 

operation.  
 It is also possible to possible to do an approximate Active Set iteration using the already 

active bounds as the active set, as discussed in N&W p. 480. 


