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QUADRATIC PROGRAMMING BASICS 
H. E. Krogstad 

Spring 2008/Rev. 2012 
 
Quadratic Programming (QP): 
 
 Common form for a lot of problems 
 The iterative step in Sequential Quadratic Programming (SQP) methods 

 
THE QP PROBLEM 
 
We are considering problems where the objective function is quadratic,  

 

  1 , symmetric.
2

q x x Gx d x G    
  
For the non-constrained problem we know  

  ,q x Gx d     
where 

1 when 0.x G d G     
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In general, G will not necessarily be positive definite, not even semi-definite. 
 
The feasibility domain  is defined in terms of  
 
 linear equality constraints, 

, ,i ia x b i  E  
 linear inequality constraints,  

, .i ia x b i  I  
 
NOTE: 
 
 is convex 

 
 The objective function will be convex if 0G  . 
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Contours of the quadratic
objective function  
(convex case) 



Absolute minimum
Equality  
constraint

Inequality  
constraints 
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Indefinite                                         Positive definite 

+
+– –
 

min

 
 

An indefinite matrix G may lead to several local minima/maxima! 
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THE QP PROBLEM WITH EQUALITY CONSTRAINTS ONLY 
 

This case can always be reduced to the following: 
 

minqx 

Ax  b,

A has full rank r  n.
 

 
    0 0; ; , contains a basis for , .n rx Ax b x Zu Ax b Z A u R       N  

 
1. Solution by Eliminating Unknowns 

 
From the linear system of constraints, express r  variables in terms of the remaining n r  

unknowns. Insert this into the objective function and solve the unconstrained problem in the 
remaining n r  variables! 
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2. Solution by the Null-Space Method 
 
Find an 0x  , and a basis for the null space of A . Insert 0x x Zu  : 

         

 

0 0 0 0

0

1
2

1 const. , , .
2

f u q x Zu x Zu G x Zu d x Zu

u Gu d u G Z GZ d Z Gx d





      

           

  0.f u Gu d   
 

Three cases, depending on :G  
 
1)  A unique solution if the matrix is positive definite  

 
2)  Infinitely many solutions if G  is singular, as long as it is positive semi-definite and 

d̃ ∈ R G̃  
3)  No solutions if it is not positive semi-definite (or  d R G  ) 

. 
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3. Solving the KKT-equations 

 
The Lagrange function is 

   1, ,
2

L x x Gx d x b Ax        
 and hence, 

 , ' 0,
.

xL x Gx d A
Ax b
     

  

 Collected into a system:  

G A ′

A 0

x




−d

b
.

 
  
Lemma 16.1: The coefficient matrix of the system is non-singular if A has full rank and G is 
positive definite on the null-space of A.  
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Assume that A has full rank and G is positive definite on the null space of A, that is, 
 

   ' ' ' ' 0 0.Zu G Zu u Z GZu u Gu u      
 
Then (x*,*) is a unique KKT point and a global minimum (Follows from the Null-Space 
Method, which then solves a strictly convex problem). 
 
There are many ways of solving the KKT system in this case. However, if x* is known,  
 

   1* ' *AA A Gx d     
 
If * is known, we reduce the over-determined system 
 

 ' *Gx d A
Ax b

  

  
to a (non-singular) system with n unknowns (Simple if G > 0!)  
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INEQUALITY CONSTRAINTS 
 
 

 
 
Let us consider the general problem 
 

1min ,
2

' 0, ,
' 0, .

x

i i

i i

x Gx d x

a x b i
a x b i

   
 
  
  

E
I  

 
We assume that all equality constraints are linearly independent. 
 
 Let as A   or  Ax    denote the active set of constraints in x  

Inequality constraints spoil the elegant theory above completely!
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The KKT-conditions: 

 

 
 
 

 

0,

, ,

, \ ,

0,

0,

i i
i x

i i

i i

i

i i i

Gx d a

a x b i x

a x b i x

i x

a x b i









  

 

 

  

   


A







A

I A

I A

E I  
(Recall that the LICQ condition is not necessary for linear constraints). 
 
If *x  is a KKT-point for the full problem, then   *x    and a corresponding subset of the 
Lagrange multipliers is also a KKT-point for the reduced problem  

 

1min ,
2

,

x

i i

x Gx d x

a x b i x 

   
 

 A  

  Setting 0 for all  i i x  A . 
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 The reduced problem is a QP problem with equality constraints. 

 
 
 If we have an active set  A   and have found a KKT-point  x ∗  for the reduced problem, it is 

easy to check the KKT-conditions for the full problem. 
 
 
 The next step would be to check the 2nd order conditions: Form the matrix A consisting of 

the gradients of the active constraints and investigate 'Z GZ , where Z  is a basis of  NA  
( Unless 0G  , in which case KKT-points are global minima) 
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ACTIVE SET METHODS 
 

1.   Assume we stay at a point 0x   .  
 
2.   We choose a working set  W   so that 

E ⊂ W ⊂ Ax 0 .
 

 
 3.  Let WA   be the corresponding matrix of gradients and solve the (equality constrained) 
reduced problem 

 
 

0

0

min ,

.



 W

q x p

A x p bW

 

 
4.  If  p  turns out to be 0, we have to check whether 0x  could be the full solution.  
 
5.   If  p ≠ 0  , we consider p as a search direction and determine   ≤ 1   as the maximum value 
where  
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x 1  x 0  p ∈ .
 

 
6a.  If  1  , we are at a KKT-point 1x  for the reduced problem ( 1x !). We then check 
whether the full KKT-equations are satisfied (in which case we have a solution). 
 
6b. Otherwise, new inequality constraints have become active, which we now include inW , and 
continue as above from 1x . 
 
When this stops, we have a KKT-point  *x   and an active set  W ∗  for the reduced problem 
satisfying  
 

Gx ∗  d − ∑
i∈W ∗

 i
∗ai  0.

 
 
 
7a.  Set the Lagrange multipliers for the constraints that are not in  W ∗   to be 0.  
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If  

 i
∗ ≥ 0  

 
for all  i ∈   W ∗ ∩ I  , we have reached a KKT-point for the full problem and that needs to be 
checked (finished if we have a convex problem). 
 
 
7b.  However, if some of  the Lagrangian multipliers are negative, we throw the corresponding 
constraints out from W ∗  and solve the new reduced problem as in (3). 
 
(It may be shown, Theorems 16.5 and 16.6 in N&W, that this will decrease the objective 
further!). 
 
Note: 
 
 In order to start the method, that is to identify a feasible point x 0 ∈  , it may be necessary 

to carry out a Phase 1 problem as in the LP case. 
 
 The Active Set algorithm is listed on p. 472.  Numerical aspects shown on pp. 477 –  480.  
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(Copied from Ed. 1. See p. 462, 2nd Ed. ) 
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Example 16.3: 
 

 
2

2
1 2

1 2

1 2

1 2

1

2

5min 1
2

2 2 0,
2 6 0,
2 2 0,

0,
0.

x x x

x x
x x
x x

x
x

       
   

  
   
   



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THE GRADIENT PROJECTION METHODS 
 
The traditional gradient projection method admits non-linear objective functions as long as the 
constraints are linear: 

min fx ,

ai
′x  bi , i ∈ E,

ai
′x ≥ bi , i ∈ I.

 
 
We are in a point  x k ∈    with a corresponding set of active constraints  A k   and the (full rank) 
matrix of gradients  A k  .  
 
A (local) feasible domain is then 
 

    ; .k k k k kx A x b x A    N  
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The gradient in  x k   is 
gk  ∇fx k 

′ ,   
 but in general  x k − gk   will not be in  k   for any   ≠ 0  .  
 
We therefore project the gradient onto  NA k    and consider the 1-D problem 

min


fx k − PNA k gk ,

x k − PNA k gk ∈ .
 

 

PNA k   I − A k
′ A kA k

′ −1 A k  
 

 We find the operator by solving the equality constrained QP-problem 
2min ,

0.
x

g x

Ax



  
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THE NON-LINEAR PROJECTION METHOD 
 

minqx ,

l ≤ x ≤ u.  
 

  
Consider the following (and obvious!) non-linear projection operator  
 

 
,
,
,

i i i

lu i i i ii

i i i

l x l
P x x l x u

u u x


  
 

 

We start at  x 0   and compute the continuous broken line path 

xt   P lu x 0 − t∇qx 0 .  
xt  ∈   
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x0-tg0

Plu(x0-tg0)


x0

x1

x2

l1 h1

l2
l3

h2

h3

 
 

 Let  x c  be the first local minimum along the path.  
 From this point the simplest would be to just compute a new gradient and repeat the 

operation.  
 It is also possible to possible to do an approximate Active Set iteration using the already 

active bounds as the active set, as discussed in N&W p. 480. 


