Moving the Derivative Inside the Integral

When computing functional derivatives we often need to interchange derivatives and inte-
grals, and usually this works fine, but in some cases the result will not be what we expect.
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Engineers may write ”if we may change the order of derivation and integration, then ...”,
but this is not acceptable in a mathematical text. A simple but important counterexample
is discussed at the end of the note.

Let us consider the equation
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The left hand side is the derivative of the function
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that is, ‘fj—‘f (t). On the right hand side, the function % has its usual meaning, and the

right hand side is equal to another function of ¢, say W (¢). Eq. 1 then states that
() =W (1), (3)

but when is this really true?

Let us consider the derivative of ® (¢):
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Here it is tempting to move lim,_,q inside the integral since
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Unfortunately, this is not always valid, even if the limit in Eq. 5 should exist for all
x. However, Lebesgue integration theory has a very powerful criterion called Lebesgue
Dominated Convergence Theorem (LDCT). This tells us that if the limit in Eq. 5 exists

for almost all x, and there is a function H (z) > 0, fabH () dx < oo, such that
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then Eq. 1 holds.



This criterion is very general, and more than we actually need most of the time. Assume
therefore that we deal with finite intervals and that f and 0 f/dt are continuous for (z,t) €
la,b] x [a, B], say. Finding a suitable H is then trivial. Applying the Secant Formula, and
the finite maximum of continuous functions on a bounded set, we obtain
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Thus, H (z) = M will do, since fab Mdx < oo. This argument actually proves a convenient
theorem stated in Troutman, p. 426:

Theorem A13: If f and Of/0t are continuous for (x,t) € [a,b] X [a, 8], and [a,b] is

finite, then the function
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(In fact, ( ) is even continuous by another application of LDCT).
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A somewhat subtile counter-example, well-known in the theory of shock-waves, is the func-
tion
1 z<t,

0 x>t (10)

h(a:,t):{
For t € (0,1), 1
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and therefore
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On the other hand,
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for all ¢ # x, and hence,
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Thus, we need to be careful when h (x,t) is not continuous!

Let us finish with a more positive example:

J(y) = /0 sin (y (z)) dz, y € C[0,1]. (15)
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Then
1

J(y+ev) = /0 sin (y (z) + ev (x)) dz, (16)

Since both sin (y (z) 4 ev (z)) and £ sin (y (z) 4 v (x)) = cos (y () + ev (z)) v (z) are con-
tinuous on, say [0, 1] x [—1,1], we apply Thm. A13 to conclude that

d% (/01 sin (y (x) + £v (:c))da:) y (17)
ThTAL3 /01 dsin (y (37)8‘; ev (2)) o . dx (18)
_ /01 cos (y () v (z) dx. (19)



