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Karush-Kuhn-Tucker (KKT) Theorem is the most central theorem in constrained optimization,

and since the proof is scattered around in Chapter 12 of N&W (more in the first edition than in

the second), it may be good to give a summary of what is going on. The complete proof of the

theorem is difficult, and we shall actually skip the proof of a central lemma.

This note is not at all simple, and certainly the hardest so far in the course. The goal for the

reader should be to get a reasonable understanding for what is going on, that is, try to understand

what the KKT theorem says and how it is applied, without trying to get all details in the proofs.

The note is somewhat extended compared to N&W and discusses the KKT theorem in connection

with convexity, as well as the Sensitivity Theorem for the Lagrange multipliers.

1 Preliminaries

We consider problems of the form

min
∈Ω

 ()  (1)

where the feasibility domain, Ω, is defined in terms of a set of constraints. In general,  itself

is defined on a larger set than Ω The constraints are equality constraints, which we write in the

short form as

 () = 0  ∈ E  (2)

and inequality constraints,

 () ≥ 0  ∈ I (3)

In order to keep the exposition simple, we shall always assume that  and {}∈I∪E are sufficiently
smooth functions.

We could, in principle, only deal with inequality constraints, since

{ () = 0}⇐⇒ { () ≥ 0 ∧− () ≥ 0}  (4)

However, apart from in some theoretical arguments, it turns out to be convenient to keep the

distinction and we therefore define

Ω = { ;  () = 0  ∈ E   () ≥ 0  ∈ I}  (5)

For a given 0 ∈ Ω, inequality constraints may be active,  (0) = 0, or inactive,  (0)  0, as

illustrated in Fig. 1 (there is also a concept weakly active, which is not needed right now). Thus,

equality constraints are always active, and it is convenient to write

 () = 0  ∈ A (6)

in order to specify the active constraints. To be even more specific, A = E ∪ (I ∩A).
We have previously defined a feasible direction as a non-zero vector  from a feasible point 0 ∈ Ω
in terms of a continuous curve in Ω  (),  ≥ 0,  () −→

→0
0, such that

 ()− 0

k ()− 0k −→→0


kk  (7)
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Figure 1: Active and inactive constraints: At the solution ∗, 2 (∗) = 0, and this constraint is active
(also called binding). The constraint 1 () ≥ 0 is not active since 1 (∗)  0.

An equality constraint  () = 0,  ∈ E , defines a contour for the function  =  (). Since

moving around in the feasible domain means to move on this contour, i.e. "horizontally", it is

obvious and easy to prove that all feasible directions from a point  ∈ Ω have to fulfil
∇ ()  = 0  ∈ E  (8)

(Otherwise, the value of  () along the -direction will immediately start to change). Similarly,

check that for active inequality constraints, we should have

∇ ()  ≥ 0  ∈ I ∩A (9)

When an inequality constraint is inactive, it puts no immediate restriction on .

For a point  ∈ Ω, we denote all feasible directions by T (),
T () = {;  feasible direction out from }  (10)

This is also called the tangent cone of Ω at , since the -s are tangents to the curves in the

definition above (Note that N&W 1st Ed. used a different notation). The set is called a cone in

R, since  ∈ T () =⇒  ∈ T () for   0 (This is just the mathematical definition of a cone).

Exactly as before (Thm. 12.3 in N&W 2nd ed.), it is easy to prove that if ∗ is a local minimum,
then

∇ (∗)  ≥ 0 for all  ∈ T (∗)  (11)

On the contrary, if (11) holds at a point ∗, the point will be a candidate for a local minimum.
The KKT theorem is based on condition 11 and some rather deep additional results.

Following the notation in N&W 2nd ed., we define the following set (which is also a cone):

F () = {; ∇ ()  = 0  ∈ E  ∇ ()  ≥ 0  ∈ I ∩A }  (12)

The set F () is called the set of linearized feasible directions in N&W. Since the feasible directions
in  already satisfy Eq. 8 and 9, we must have

T () ⊂ F ()  (13)
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Figure 2: The LICQ holds in case A, but fails in case B, since the gradients in the point are parallel.

but it not obvious, and not true in general, that all directions in F () are feasible (Counter-
example: N&W Example 12.4, p. 317 — 18).

This is all basic material that we need in order to be able to state the Karush-Kuhn-Tucker

Theorem, but there is one extra technical condition that is used in the proof, and which may be

a bit difficult to grasp. A point 0 ∈ Ω is regular if the gradients of the active constraints at 0,

{∇ (0)}   ∈ A (14)

are linearly independent. N&W call this the Linearly Independence Constraint Qualification

(LICQ), see Fig. 2. If we have  active constraints, and the LICQ holds, then  must be less or

equal to , and the matrix

 (0) =

⎡⎢⎢⎢⎣
− ∇1 (0) −
− ∇2 (0) −

...

− ∇ (0) −

⎤⎥⎥⎥⎦ (15)

will have rank . This matrix will be central in the proofs below.

2 The Main Theorem

The Karush-Kuhn-Tucker Theorem is Theorem 12.1 in N&W. The problem is defined in Eq. 1

and 5:

min
∈Ω

 () 

Ω = { ;  () = 0  ∈ E   () ≥ 0  ∈ I}  (16)

The formulation here is a bit more compact than the one in N&W (Thm. 12.1 p. 321).

Assume that ∗ ∈ Ω is a local minimum and that the LICQ holds at ∗. Then it is possible to
write

∇ (∗) =
X
∈E∪I

∗∇ (∗)  (17)

where
(i) ∗ ·  (∗) = 0  ∈ E ∪ I
(ii) ∗ ≥ 0 for  ∈ I

(18)

Note the following:
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• A point ∗ where Eq. 17 and 18 hold is called a KKT-point.
• The parameters {} are called the Lagrange multipliers.
• It follows from 18 (i) that if an inequality constraint is inactive ( (

∗)  0) then the

corresponding ∗ will be equal to 0. The sum in Eq. 17 is therefore, in effect, only over

 ∈ A,
∇ (∗) =

X
∈A

∗∇ (∗)  (19)

• The Lagrange multipliers for inequality constraints must be non-negative, whereas equality
constraints have no such restriction (since  () = 0 ⇐⇒ − () = 0)

• Equation 17 may be written as

∇L (∗ ∗) = ∇ (∗)−
X
∈A

∗∇ (∗) = 0 (20)

where the so-called Lagrange function, L, is defined as

L ( ) =  ()− 0 ()  (21)

and where  = (1 · · ·  )
0 and  () = (1 ()  · · ·   ())0. The notation ∇ means the

gradient taken with respect to .

• The theorem states only necessary conditions. Even if Eq. 17 and 18 hold at a point ∗ ∈ Ω,
it is not always this is a minimum. Unless, e.g.

(i) if we know that a minimum exists and the problem turns out to have only one KKT-

point.

(ii) if we have a convex problem (see below).

In order to apply the theorem, let us first assume that we only have equality constraints. We then

form the Lagrange function and simply solve (!) the + nonlinear equations for (∗ ∗):

∇L ( ) = ∇ ()−
X
∈A

∇ () = 0

−∇L ( ) =  ()0 = (1 ()  · · ·   ())0 = 0 (22)

If we also have inequality constraints, it is in general impossible to say which constraints are

active or inactive at the solution. In principle, we must then include all possible combinations

of the inequality constraints as equalities and check which combination makes the smallest value

of  (∗). We also have to check the sign of the Lagrange multipliers for the active constraints,
and, of course, that inactive constraints are not violated. After the proof of the theorem, we shall

demonstrate this for a simple example.

3 Proof of the KKT Theorem

The proof of the KKT-theorem is not simple, but can be streamlined by first establishing a couple

of lemmas. Start by reading Lemma A and what is called Farkas Lemma below. Then read the
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actual proof of the KKT theorem (follows after Farkas Lemma), and finally the proof of Lemma

A, which is rather tricky.

Lemma A (part of Lemma 12.2 in N&W 2nd ed.): If the LICQ holds at a point  ∈ R,

then T () = F ().
Since we always have T () ⊂ F (), Lemma A establishes the opposite inclusion, T () ⊃ F ()
when LICQ holds.

Proof: Form the matrix  of all gradients of the active constraints ( ∈ A) at  (also stated in
Eq. 15):

 =

⎡⎢⎣ ∇1 ()...

∇ ()

⎤⎥⎦  (23)

Because LICQ holds,  has full rank, and hence,  ≤ We know that dimN ()+rank () = ,

so let  = [1 · · ·  −] be a basis for N ()  The ×  matrix∙


 0

¸
(24)

will then be non-singular (Think about it!).

Assume that  ∈ F (). We need to show that  ∈ T (). The idea of the proof is to establish the
existence of a curve  () ∈ Ω such that  ()→  when → 0, and Eq. 7 holds. The construction

uses the Implicit Function Theorem (see Basic Tools Note).

We start by forming a (smart!) non-linear system of equations for  ():

 ( ) =

∙
 ()− 

 0 ( − − )

¸
= 0 (25)

which obviously has the solution  =  for  = 0. We now claim that it also has a solution  () ∈
Ω for all  ≥ 0 in a neighborhood of  = 0. The existence of  () follows from the Implicit Function
Theorem, since





¯̄̄̄
=0

=

½




¾

=1

=

∙


 0

¸
(26)

is non-singular (fill in the details!). If we assume that all constraints are differentiable,

 () =  () +∇ () ( − ) +  (k − k) =  ( − ) +  (k − k)  (27)

We obtain

0 =  ( ()  ) =

∙


 0

¸
( ()− − ) +  (k ()− k)  (28)

which implies, again since the matrix in front is non-singular, that

 ()−  = +  (k ()− k)  (29)

Since  () already satisfies

 ( ())−  = 0 (30)

we see that

 ( ()) = ∇ ()  =
½

0  ∈ E 
≥ 0  ∈ I ∩A (31)
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In addition, since  () →  when  → 0, and we have assumed that all elements in the -vector

are differentiable and hence continuous functions,  () will also satisfy all inactive constraints

for small enough -s. All this taken together,  () is in Ω for sufficiently small non-negative -s.

Finally, from Eq. 29,
 ()− 

k ()− k −→→0


kk  (32)

and  is really a feasible direction, that is,  ∈ T ().
The next lemma was not explicitly mentioned in N&W, 1st Ed., but is quite famous and was first

proved in 1902.

Farkas Lemma: Let  and {}=1 be -dimensional row vectors and

S = { ∈ R ;   0 and  ≥ 0  = 1 · · · }  (33)

Then, S = ∅ if and only if there is a non-negative vector  ∈ R such that

 =

X
=1

 (34)

The complete proof is surprisingly difficult, and all ”simple proofs” of Farkas Lemma, or similar

statements, as the one in the 1st edition of N&W, are fakes,— they use results already proved by

Farkas Lemma, or other not-so-obvious results (It looks however that the proof in N&W 2nd Ed.

is complete).

The general idea of the proof is simple. First of all, if Eq. 34 holds, then it is easy to see that

S = ∅. For the converse, let

C =
(
;  =

X
=1

  ≥ 0
)


The set C is also a cone. It will be convex and closed (tricky to prove!). If  ∈ C, it is possible to
put a plane between  and C (Separating hyperplane theorem). One of the normal vectors to this
plane will be in S, which therefore in this case is not empty.
The lemma is often formulated in terms of the matrix

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1 −
− 2 −

...

−  −

⎫⎪⎪⎪⎬⎪⎪⎪⎭  (35)

Given  and .

Problem P: Find solutions  to the inequalities

  0

 ≥ 0 (36)

Problem D: Find a  ≥ 0 such that
 = 0 (37)
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The Alternative Farkas Lemma: Either P or D have solutions, but never both simultane-

ously.

Prove the "never both simultaneously" yourself! (No, this does not prove Farkas Lemma. There

could be cases where neither P nor D hold!).

Equipped with Lemma A and Farkas Lemma, the proof of the KKT-theorem is a piece of cake:

We know by assumption that ∗ is a local minimum. Therefore,

∇ (∗)  ≥ 0 for all  ∈ T (∗)  (38)

Since the LICQ holds, Lemma A tells us that T (∗) = F (∗). Let ∇ (∗) be  in Farkas Lemma,
and the -s equal to the gradients ∇ (∗),  ∈ A, where  (∗) ≥ 0 and − (∗) ≥ 0 have been
used for all equality constraints. Since F (∗) contains exactly all feasible directions (and not
more!) and 38 holds, problem P has no solution. Hence Problem D has a solution, and

∇ (∗) =
X

∗∇ (∗)  ∗ ≥ 0 (39)

The remaining details (i.e., putting the sum back to the form in Eq. 17 or 19, and the conditions

in 18) are left to the reader.

4 A worked example for the KKT theorem

Consider the objective function

 () = 221 + 212 + 22 − 101 − 102 (40)

and the constraints

1 () = 5− 21 − 22 ≥ 0 (41)

2 () = 6− 31 − 2 ≥ 0 (42)

Since the objective function is continuous and Ω is bounded (why?), we are sure to have minima.

As mentioned above, we first form the Lagrange function

L ( ) =  ()− 11 ()− 22 ()  (43)

The KKT-points (candidates for minima!) have to satisfy the following set of equations

L
1

( ) = 41 + 22 − 10 + 211 + 32 = 0 (44)

L
2

( ) = 21 + 22 − 10 + 212 + 2 = 0 (45)

1
¡
5− 21 − 22

¢
= 0 (46)

2 (6− 31 − 2) = 0 (47)

1 2 ≥ 0 (48)

There are 4 possible combinations of active constraints at the solution:
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1. No active constraints

2. 1 active and 2 inactive

3. 1 inactive and 2 active

4. Both 1 and 2 active

4.1 Case 1: No active constraints

SInce there are no active constraints, the theorem says that 1 = 2 = 0, and the minimum will

occur for a point where

∇L ( 0) = ∇ () = 0 (49)

This leads to

41 + 22 − 10 = 0 (50)

21 + 22 − 10 = 0 (51)

with the solution

∗1 = 0 (52)

∗2 = 5 (53)

However, ∗ needs to be in Ω, so we must check the constraints:

1 (
∗) = 5− 0− 52 = −20 (Violation!) (54)

2 (
∗) = 6− 0− 5 = 1 (OK!) (55)

This eliminates Case 1.

4.2 Case 4: Both constraints active

Now we have

1 () = 5− 21 − 22 = 0 (56)

2 () = 6− 31 − 2 = 0 (57)

which leads (by squaring the second condition) to a quadratic equation for 1,

1021 − 361 + 31 = 0 (58)

There are two solutions and two possible points:

 = (217  −052)  (59)

 = (143  172)  (60)

We need to check the Lagrange multipliers (∇L = 0):

41 + 22 − 10 + 211 + 32 = 0 (61)

21 + 22 − 10 + 212 + 2 = 0 (62)
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Hence,

1 =
10− 22 − 1

32 − 1
 2 = − (21 + 22 − 10 + 212)  (63)

The point  gives

1 = −237 2 = 422 (64)

Since 1 and 2 should be positive,  is unacceptable.

Similarly, the point  gives

1 = 137 2 = −1 02 (65)

Also  is unacceptable.

4.3 Case 3: c1 inactive, c2 active

Since 2 is active,

6− 31 − 2 = 0

Thus,

2 = 6− 31 (66)

and

 (1) =  (1 6− 31) = 521 − 41 − 24 (67)

The (global) minimum occurs for  = 0, or

1 =
2

5
 2 =

24

5
 (68)

However,

1 (1 2) = 5−
µ
2

5

¶2
−
µ
24

5

¶2
= −91

5
 0! (69)

We assumed that 1 was inactive, but this is not a guarantee for not violating it!

Only one case it left, and so far we have not found a single KKT-point.

4.4 Case 2: Only 1 is active

Now 2 = 0, µ
L
1

=

¶
41 + 22 − 10 + 211 = 0 (70)µ

L
2

=

¶
21 + 22 − 10 + 212 = 0 (71)

21 + 22 = 5 (72)

One solution of these 3 equations is easily seen to be

∗1 = 1
∗2 = 2 (73)

∗1 = 1
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Case 1

Case 4

Case 3

Solution

Figure 3: Contours of the objective function and the various constraints. Can you imagine where the

other stationary point for Case 4 is?

This looks promising, but we must also check 2:

2 (1 2) = 6− 3− 2 = 5  0 (OK!)

Finally we found a KKT-point.

There is another solution of Eq. 70 — 72, which is not a KKT-point (Left for you to find

numerically!).

A summary of the problem is given in Fig. 3.

5 Convexity and the KKT-conditions

We have several times pointed out the superiority of convex optimization problems, and these oc-

cur when a convex objective function  is minimized over a convex feasibility domain Ω. Theorem

12.7 in N&W (p. 350—351) gives us simple and usable sufficient conditions for Ω to be convex.

We repeat the result here for completeness:

Lemma: Let (as above)

Ω = {; () = 0  ∈ E  () ≥ 0  ∈ I} (74)

and assume that () for  ∈ E are linear functions, whereas () for  ∈ I are concave (that
is, − is convex). Then Ω is convex.
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Proof: Look back into the Basic Tools Note about convex functions (Proposition 2) and try

to prove this lemma yourself before you look in N&W (Hint: Write all equality constraints in

inequality form by requiring that () ≥ 0 and −() ≥ 0. Note that when  is linear, both 
and − are linear functions and hence convex!).
An optimization problem where both Ω and  are convex is called a Convex Problem or a Convex

Programme, and the theory is called Convex Programming.

Let us consider the convex problem

min () (75)

() = 0  ∈ E  () ≥ 0  ∈ I (76)

where the constraints fulfill the conditions in the lemma.

We recall from the unconstrained theory that for a differentiable convex function, the condition

∇ (∗) = 0 (77)

is both necessary and sufficient for ∗ ∈ Ω to be a global minimum. It turns out that we have a
similar situation for constrained problems. However, it does not seem that the following theorem

is stated explicitly in N&W:

The Convex KKT Theorem: Consider a convex problem where Ω fulfills the conditions in the

lemma above, and where (for the argument in the proof ) all linear equality constraints have been

expressed as inequality constraints. Assume that ∗ is a KKT-point, that is,

(i) ∇ (∗) =P∈I 
∗
∇ (∗) 

(ii) ∗  (
∗) = 0

(iii)  (
∗) ≥ 0

(iv) ∗ ≥ 0
(78)

Then ∗ is a global minimum.

Proof: The feasible set Ω is convex, and the Lagrangian evaluated for  ∈ Ω and  = ∗,

L ( ∗) =  ()−
X
∈I

∗  () =  () +
X
∈I

∗ (− ())  (79)

is also convex in , because ∗ ≥ 0, and  , as well as −, are convex.
A differentiable convex function  lies above its tangent planes, that is,

() ≥ (0) +∇(0)0(− 0) (80)

(The proof is in the Basic Tools Note). By first observing that

−
X
∈I

∗  (
∗) ≤ 0 (81)

we have

 () ≥ L ( ∗)
≥ L (∗ ∗) +∇L (∗ ∗) (− ∗)
=  (∗)− 0 + 0× (− ∗) (82)

=  (∗) 
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Note that in this theorem, the KKT-point is assumed to exist, and no LICQ-condition is necessary

for that.

However, if we have a convex problem and a global minimum ∗ (since all minima are global),
and the LICQ condition holds in ∗, then the KKT-conditions (78) also hold because of the KKT
Theorem.

For convex problems, the KKT-conditions are therefore sufficient for having a global minimum!

Since the solution we found for Case 2 in the example above was an isolated KKT-point, checking

the other solution was not really necessary.

6 Second Order Conditions

Similar to the unconstrained case and the general (non-convex) situation, the first order conditions

in the KKT theorem can not ensure that the KKT point you find is a minimum. From the non-

constrained case, we recall that if ∇ (∗) = 0, it was possible to go on and look at the second
derivative, the Hessian, ∇2 (∗). If ∗ was a local minimum, then ∇2 (∗) was necessarily
positive semi-definite, and if ∇ (∗) = 0 and ∇2 (∗)  0, then we could conclude that ∗ was
a local minimum.

The constrained case is more complicated for two reasons:

1. The feasible directions from a point  ∈ Ω may be just be a small subset of all directions
from .

2. The gradient of  at ∗ is in general not 0.

We know that at a local minimum, ∇ (∗)  ≥ 0 for all feasible directions. If ∇ (∗)   0 it is
clear that  () increases (locally) along curves out from ∗ with limiting direction , but this is

impossible to say if ∇ (∗)  = 0
Let us now consider a point ∗ where the KKT-conditions and the LICQ hold. Since LICQ holds,
Lemma A says that the feasible directions is also equal to the set F (∗), as defined in Eq. 12.
Below, we simplify the analysis somewhat compared to N&W by assuming strict complementarity

(N&W, Definition 12.5, p. 321). This implies that the Lagrange multipliers to all active inequality

constraints are strictly positive.

Following in essence N&W Section 12.5, we introduce the subset C (∗) ⊂ F (∗) consisting of the
problematic directions for which ∇ (∗)  = 0. Since ∗ is a KKT-point, we have for  ∈ C (∗)
that

0 = ∇ (∗)  =
X
∈E

∗∇ (∗) +
X

∈I∩A
∗∇ (∗)  (83)

The first sum is always 0, and in the second we know that ∇ (∗)  ≥ 0. However, we also

know that ∗ ≥ 0 according to the KKT theorem, and in fact strictly positive, according to strict
complementarity. Hence

∇ (∗)  = 0  ∈ I ∩A (84)

and we may characterize C (∗) simply as

C (∗) = {; ∇ (∗)  = 0  ∈ A}  (85)
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Theorem N&W 12.5 and 12.6 Let ∗ be a KKT-point where LICQ and strict complementarity
apply.

(a) If ∗ is a local minimum, then

0∇2L (∗ ∗)  ≥ 0 for all  ∈ C (∗)  (86)

(b) If

0∇2L (∗ ∗)   0 for all  ∈ C (∗)   6= 0 (87)

then ∗ is a strict local minimum.

(The theorem is also valid without strict complementarity, see N&W, Section 12.5)

Proof: Recall the proof of Lemma A and the solution  ()→ ∗ when → 0. Since

 ( ())−  = 0 (88)

we have for all  ∈ A
 ( ()) = ∇ (∗)  = 0 for all  ∈ C (∗)  (89)

Thus,

L ( ()  ∗) =  ( ())− ∗0 ( ()) =  ( ())  (90)

Along  () we may therefore check the Lagrangian instead of  .

 ( ()) = L ( ()  ∗)
= L (∗ ∗) +∇L (∗ ∗) ( ()− ∗)+ (91)

+
1

2
( ()− ∗)0∇2L (∗ ∗) ( ()− ∗) + 

³
k ()− ∗k2

´
(92)

=  (∗) +
1

2
( ()− ∗)0∇2L (∗ ∗) ( ()− ∗) + 

³
k ()− ∗k2

´


Note that it follows from the KKT theorem that L (∗ ∗) =  (∗), and ∇L (∗ ∗) = 0
As in the proof of Lemma A, we can for any  ∈ C (∗) find an  () such that

 ()− ∗ = +  (k ()− ∗k)  (93)

and the rest of the proof of (a) is left to the reader.

For Part (b), the proof is by contradiction: Assume that Eq. 87 holds, but ∗ is not a strict
minimum. From the definition of a strict minimum we then have that there is a sequence {} ⊂ Ω,
converging to ∗, and such that  () ≤  (∗). By a compactness argument, there also is even a
subsequence {} such that

 − ∗

k − ∗k −→→∞  (94)

(Digression: The compactness argument. The left hand sides of Eq. 94 will for all ’s be vectors

of length 1. Their end-points are lying on the sphere kk = 1 in R. This sphere is a closed and

bounded set in R and therefore compact. Then we apply the definition of compactness).

Thus,  is a feasible direction in ∗(N&WDef. 12.2). If  is not in C (∗), we have∇ (∗)   0 for
at least one of the active constraints, and then (since in that case ∗  0 by strict complemen-

tarity), also ∇ (∗)   0. But that is simply impossible if  () ≤  (∗) (Remember Taylor’s
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formula,  () =  (∗)+∇ () ( − ∗)). The only remaining case is that  ∈ C (∗). From
Eq. 90 we have in general that

 () ≥ L (  ∗) =  (∗) +
1

2
( − ∗)0∇2L (∗ ∗) ( − ∗) + 

³
k ()− ∗k2

´
 (95)

This leads, by a similar argument to the proof of (a), to

0 ≥ 0∇2L (∗ ∗)   0 (96)

which is impossible.

The above result may look a little obscure, but it has a simple geometric content. Assume for

simplicity that we only have one (differentiable) equality constraint. 0 (
∗) = 0. The constraint

limits our motion around ∗, and if we magnify the neighborhood, it looks for us that the constraint
forces us to move in the tangent (hyper) plane through ∗, which for ∇0 (∗) 6= 0, is defined as

{ ; ∇0 (∗) (− ∗) = 0}  (97)

Adding another equality constraint limits our motion to the intersection of the two planes. E.g.,

in R3, the intersection of two different planes will be a line. If the LICQ holds, the intersection

of all tangent planes defines what is called the tangent space in ∗. It is clear from Eq. 85 that

C (∗) is the tangent space in ∗ if we only have equality constraints (and will continue to be so if
the LICQ holds and we have strict complementarity). If we introduce, as in the proof of Lemma

A, the matrix of all gradients of the active constraints,

 =

⎡⎢⎣ ∇1 (
∗)

...

∇ (∗)

⎤⎥⎦  (98)

then

C (∗) = N ()  (99)

This is illustrated in Fig. 4. If  = [1 2 · · · −] is a basis for N (), we can write all vectors

 ∈ C (∗) as
 =   ∈ R− (100)

The expression in Eq. 86 then reads

0∇2L (∗ ∗)  = 0
¡
 0∇2L (∗ ∗)¢ (101)

It is common to call  0∇2 (∗ ∗) the projected Lagrangian, where the projection is onto

the linear operators on N ()  The conditions in the theorem may therefore be tested on the

projected Lagrangian on the − dimensional space N (), where the tests are identical to the

non-constrained case.

6.1 Example

We illustrate the above theory by the following very simple problem (are you able to see the

practical origin of this problem?):

min  () = min {− (12 + 23 + 13)}
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Figure 4: At a regular point (i.e., where the LICQ holds), the tangent space is defined in terms of the

gradients of the active (equality) constraints, and is equal to N ().

when

 () = 1 + 2 + 3 − 3 = 0
The Lagrangian is

L ( ) = − (12 + 23 + 13)−  (1 + 2 + 3 − 3) 
leading to the equations

−2 − 3 −  = 0

−1 − 3 −  = 0

−2 − 1 −  = 0

1 + 2 + 3 = 3

The KKT-point is ∗1 = ∗2 = ∗3 = 1 and 
∗ = −2 (which is acceptable for an equality constraint!).

Is this point a minimum? Let us compute ∇2L:

∇2L =
⎡⎣ 0 −1 −1
−1 0 −1
−1 −1 0

⎤⎦
The matrix has eigenvalues −2 and 1, and is therefore by itself not positive semidefinite. However,
close to the solution, we only move (approximately) around in a set which is N () (with origin

shifted to ∗, and where  = [1 1 1]. The columns of

 =

⎡⎣ 1 0

−1 1

0 −1

⎤⎦
span N (), and we check the projected Lagrangian,

 0∇2L =
∙
1 −1 0

0 1 −1
¸⎡⎣ 0 −1 −1
−1 0 −1
−1 −1 0

⎤⎦⎡⎣ 1 0

−1 1

0 −1

⎤⎦ = ∙ 2 −1
−1 2

¸
 0 (102)
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Thus, the KKT point is a strict, and in fact, global minimum (Which, of course, is seen easier by

inserting the constraint directly into the objective and thus eliminating 3, for example).

7 Sensitivity and the Meaning of the Lagrange Multipliers

The size of the Lagrange multipliers can tell us something about the importance of the various

constraints at the solution, but the treatment in N&W (p. 341—343) is rather sketchy.

The discussion below is adapted from D. G. Luenberger: Linear and Nonlinear Programming, 2nd

Ed., Addison Westley, 1984, p. 313 — 318, and states the so-called Sensitivity Theorem.

Consider a KKT point ∗ where the LICQ holds and where also

0∇2L (∗ ∗)   0
for all  ∈ C (∗), such that ∗ is a strict local minimum. Let us again introduce the matrix  as
in Eq. 98 such that the KKT equations may be expressed as

∇ ()− 0 () = 0 (103)

 () = 0 (104)

The vector  consists of the constraints that are active at ∗

Let us change the active constraints a tiny amount to

 () =  (105)

where  ∈ R but such that none of the inactive constraints become active. The KKT equations

then change to

∇ ()− 0 () = 0 (106)

 () =  (107)

We now claim that these equations have, for sufficiently small , a unique continuous solution

∗ () (and ∗ () ) such that
∗ () −→

kk→0
∗ (108)

This follows again from the Implicit Function Theorem: The equations 106 and 107 have the

solutions ∗ and ∗ for  = 0. Furthermore, the Jacobian of the left hand side at ∗ is (derivation
left to the reader!) ∙ ∇2L (∗ ∗) 0 (∗)

 (∗) 0

¸
 (109)

and this matrix is non-singular :

Lemma: Let  ∈ R× and  ∈ R×, where  has full rank , and 0  0 for all

 ∈ N (),  6= 0. Then ∙
 0

 0

¸
(110)

is non-singular.

Proof: Also left for the reader (Hint: Assume that∙
 0

 0

¸ ∙




¸
=

∙
0

0

¸
 (111)
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and show that this implies that both  and  are equal to 0! In case of problems, look up N&W,

Lemma 16.1 in Chapter 16).

After this, we can then state the

The Sensitivity Theorem:

Assume that the conditions above hold. Then

 (∗ ()) =  (∗) + ∗0 +  (kk)

Proof: Let us introduce the notation

∇ (
∗ ())|=0 =

½



 (∗ ())

¯̄̄̄
=0

¾
(112)

The result will follow if we are able to to prove that




 (∗ ())

¯̄̄̄
=0

= ∗ (113)

and this follows by applying the Chain Rule and Eq. 107: First of all,

∇ (
∗ ())|=0 = ∇ (∗) (114)

where

 =

½
∗


(0)

¾
 (115)

Moreover,

∇ (
∗ ())|=0 =  (116)

But also, since  (∗ ()) = ,

∇ (
∗ ())|=0 = × (117)

Hence, by using the first KKT-equation,

∇ (
∗ ())|=0 = ∇ (∗) =

¡
∗0

¢
 = ∗0 (118)

Note that the sign of  here is the opposite of what is used in N&W.

A change in the active constraint  () = 0 to  () =  thus leads to a first order change in

the optimal value of the objective  (∗) by ∗ . Note the definition strongly active, or binding,
for an active inequality constraint where ∗  0, and weakly active if ∗ = 0 (N&W, Definition
12.3). This is illustrated in Fig. 5. For an inactive constraint, a small change does not influence

optimal solution at all (∗ = 0), whereas for a weakly active constraint, the value of the objective
function does not change to the first order if the condition is perturbed.

The larger the Lagrange multipliers, the more dramatic the change in the optimal value!

The changes of the optimal values of ∗ and ∗ due to changes in  have to be found by solving

the equations 106 and 107. To first order, this amounts to solve the (regular) linear system∙ ∇2L (∗ ∗) 0 (∗)
 (∗) 0

¸ ∙
∗ ()− ∗

∗ ()− ∗

¸
=

∙
0



¸
 (119)
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Figure 5: Constraints and Lagrange coefficients for the three different cases inactive, weakly active, and

active constraints.
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