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Contact during exam:
Anne Kværnø: 92663824

Exam in TMA4180 Optimization Theory

Wednesday May 29, 2013
Tid: 09.00 – 13.00

Auxiliary materials: Simple calculator (Hewlett Packard HP30S or Citizen SR-270X)
Rottmann: Matematisk formelsamling

With preliminary solutions (not proofread).

Problem 1 Let
f(x) =

x2

2
+ x cos y.

a) Find the gradient and the hessian of f .

b) Find all minima of f .

For the remaining part of this problem we discuss one step of a line search method,
starting from x0 = (1, π/4), with search direction p = (−1, 0).

c) Confirm that p is a descent direction from x0.

d) State the Wolfe-conditions. What are the purpose of these conditions?
If c1 = 0.1 and c2 = 0.8, what are the admissible values for the steplength α.

e) Do one step of the line search method, using the exact value for the steplength.

Solution:
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a)

Gradient: ∇f(x) = (x+ cos y, −x sin y)T ,

Hessian: ∇2f(x) =

(
1 − sin y

− sin y −x cos y

)
b) There are two sets of solutions for the first order condition: ∇f(x) = 0:

1. The first solution is x = 0, y = (n+ 1/2)π for n = 0,±1,±2, . . . . In this
case the Hessian is

∇f(x) =

(
1 (−1)n+1

(−1)n+1 0

)
with eigenvalues λ = 1

2
(1±
√

5), so these are not minima (they arabesquee
saddle points).

2. The second solution is x = (−1)n+1, y = nπ, for n = 0,±1,±2, . . . .
The Hessian in this point is simply the identity matrix, which obviously
is SPD, so these are strict local minima. Further

f
(
(−1)n+1, nπ

)
=

1

2
+ (−1)n+1 cosnπ = −1

2

so we can conclude that these are also global minima.

c) The direction p0 is descent if ∇f(x0)
Tp0 < 0. In our case this is

(1 +
√

2/2,−
√

2/2) ·
(
−1
0

)
= −1−

√
2/2 < 0

so p0 is a descent direction.

d) The Wolfe conditions are (general)

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)
Tpk

∇f(xk + αkpk)
Tpk ≥ c2∇f(xk)

Tpk.

for two parameters c1 and c2 satisfying 0 < c1 < c2 < 1.

Choosing the steplengths such that the Wolfe conditions are satisfied ensures
sufficiently decrease of the objective function from one iteration to the next
one, to ensure convergence the line search method, see Theorem 3.2 in N&W
for details. This is critical when the one-dimensional minimization problem of
a line search step is solved approximately.

With the given f , x0 and p0, this becomes

α ≤ (1− c1)(2 +
√

2)

α ≥ (1− c2)(1 +
√

2)/2

or, with c1 = 0.1 and c2 = 0.8

0.3414 ≤ α ≤ 3.073.
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e) One step with a line search method means to solve the following one-dimensional
problem

min
α>0

f(x0 + αp0) = min
α>0

{
1

2
(1− α)2 +

√
2

2
(1− α)

}
with solution α0 = 1 +

√
2/2. The new iterate is then

x1 = x0 + α0p0 =

(
−
√

2

2
,
π

4

)T

.

The value of the objective function is then f(x1) = 0.
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Problem 2 Given the linear problem

min x1 − 3x2

subject to

−x1 + 2x2 ≤ 6

x1 + x2 ≤ 5

x1, x2 ≥ 0

a) Make a sketch of the feasible domain, and solve the problem graphically.

b) Write the problem in standard form.

c) Write up the dual of this problem.
State the relations between the primal and the dual problem (the duality
theorem).

d) Explain the idea of the simplex method for linear problems.

Perform one step of the method on the given problem, starting from
(x1, x2) = (0, 0).

Solution:

a)

The minimum is at the solution of

−x1 + 2x2 = 6, x1 + x2 = 5,

that x1 = 4/3 and x2 = 11/3.
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b) The standard form of an LP problem is

min cTx subject to Ax = b, x > 0.

In our case, using slack variables x3 and x4, this is

minx1 − 3x2

subject to
−x1 + x2 + x3 = 6

x1 + x2 + x4 = 5

x1, x2, x3, x4 ≥ 0

so
A =

(
−1 2 1 0
1 1 0 1

)
, b = (6, 5)T , cT = (1,−3, 0, 0).

c) The dual problem is

max bTλ subject to ATλ ≤ c

where λ is the vector of Lagrange multipliers for the equality constraints. In
our case, this is:

max 6λ1 + 5λ2

subject to
−λ1 + λ2 ≤ 1

2λ1 + λ2 ≤ −3

λ1 ≤ 0

λ2 ≤ 0

For the relation between the primal and the dual problem, see Theorem 13.1 in
the N&W.

d) The rough idea of the simplex method is the following: The feasible domain Ω
of a LP problem is a polytope. Start from a vertex (or a basic feasible point)
of this polytope. Move from vertex to vertex along edges, reducing the objective
function cTx. If a minimum exist, it is on a vertex, and will eventually be
found.

How this can be done mathematically is better explained with the example. In
our case we start with x1 = x2 = 0. Since the point has to be feasible, Ax = b
has to be satisfied, so x3 = 6 and x4 = 5. This fulfill the definition of a
basic feasible point (p. 363 in N&W), with B = {3, 4}. Do the corresponding
splitting of the system, that is:

x = [0, 0, 6, 5]T = [0T , xTB]T , A = [N,B], cT = [cT1 , c
T
2 ].

From the definition of a feasible point, B has to be invertible. In this case, B
is simply the 2 × 2 identity matrix The idea is now to search for an x(t) ∈
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Ω s.t. x(0) = [0T , xTB]T and cTx(t) is reduced as t increases. Let x(t) =
[v(t)T , y(t)T ]T . We get

Ax(t) = Nv(t) +By(t) = b y(t) = B−1(b−Nv(t) = xB −B−1Nv(t).

cTx(t) = cT2 v(t) + cT1 y(t) = cT1 xB + (cT2 − cT1B−1N)v(t)

In our case, the vector cT2 − cT1B−1N = [1,−3]T . So, by choosing v(t) = [0, t]T

cTx(t) will decrease with increasing value of t. But the last two components
are y(t) = [6, 5]T − [2, 1]T t. They should both be non-negative, so we can only
increase t up to t = 3, in which case y(3) = [0, 2]T , v(3) = [0, 3]T and the new
point is

x = [0, 3, 0, 2]T .

Which is what was expexted from the figure in point a).
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Problem 3

a) Define a (strict) convex function and a convex set.

b) Let the set Ω be defined by

Ω = {x ∈ Rn : ci(x) ≤ 0, i = 1, . . . ,m}

Show that Ω is convex if all the functions ci, i = 1, 2, . . . ,m are convex.

Consider the following constrained optimization problem:

min x1

subject to

x1 − x22 − x23 ≥ 0

x2 + x3 − 1 ≥ 0

c) Set up the KKT conditions for this problem.

d) Find the KKT point(s). What can you say about the optimality of these points
(if they exist)?

Solution:

a) A set Ω is convex if, for all x,y ∈ Ω

θx + (1− θ)y ∈ Ω, for all θ ∈ (0, 1).

A function f defined on a convex set Ω is convex iff for all x,y ∈ Ω

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y), for all θ ∈ (0, 1).

It is strictly convex if the inequality above is strict.

b) We have:

ci(θx + (1− θ)y) ≤ θci(x) + (1− θ)ci(y) ci is convex
≤ 0 ci(x), ci(y) ≤ 0,

θ, 1− θ > 0.

Which is true for all i = 1, . . . , n. So θx + (1− θ)y ∈ Ω and we can conclude
that Ω is convex.
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c) The Lagrangian is

L(x, λ) = x1 − λ1(x1 − x22 − x23)− λ2(x2 + x3 − 1)

and the KKT-conditions are

∇xL(x, λ) = 0 (a)
λici(x) = 0, i = 1, 2 (b)

λi ≥ 0, i = 1, 2 (c)
ci(x) ≥ 0, i = 1, 2 (d)

which becomes

1− λ1 = 0, (a’)
2λ1x2 − λ2 = 0

2λ1x3 − λ2 = 0

λ1(x1 − x22 − x23) = 0 (b’)
λ2(x2 + x3 − 1) = 0

λ1, λ2 ≥ 0, (c’)

x1 − x22 − x23 ≥ 0, (d’)
x2 + x3 − 1 ≥ 0

d) Clearly, λ1 = 1, so (c’) is satisfied for this multiplier. Further, from (b’),
x1 = x22 + x23. If λ2 = 0 then from (a’) x2 = x3 = 0 and then x1 = 0. But this
solution do not satisfy the last inequality of (d’), so we conclude that λ2 6= 0.
The last two equations of (a’) together with the last of (b’) is

2x2 − λ2 = 0, 2x3 − λ2 = 0, x2 + x3 − 1 = 0,

with the solution λ2 = 1 and x2 = x3 = 1/2. We then have the following
solution

x1 = x2 = x3 =
1

2
, λ1 = λ2 = 1. (*)

Finally, we have to prove that the LICQ-condition holds, that is ∇ci(x) are
linear independent for all active constraints in this point. In our case, both
constraints are active, and

∇c1(x) = (1,−2x2,−2x3), ∇c2(x) = (0, 1, 1)

which obviously are linear independent. So (*) is a KKT-point.

Since the objective function x1 is linear and thus convex, the feasible domain Ω
is convex (since ci, i = 1, 2 are both concave), and we have found an extreme
point, we know that this is a global minimum. And since there was only one
solution of the KKT-conditions, we know that the minimum is unique.
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Problem 4 Let

F (y) =

∫ 2

1

(y′(x))2

x
dx

be defined on
D = {∈ C1[0, 1] ; y(1) = 0, y(2) = 3}.

a) Solve the problem
min
y∈D

F (y).

b) Solve the problem from a), but now with the additional constraint∫ 2

1

y(x)dx = 1.

Solution:

a) First of all, notice that the integrand only depends on y′. On D the function
f(x, z) = z2/x is strongly convex, since

f(x, z + w)− f(x, z)− fz(x, z)w =
1

x

(
(z + w)2 − z2 − 2zw

)
=
w2

x
≥ 0

with equality if and only if w = 0.

The Euler-Lagrange equation

d

dx
fz[y(x)] = fy[y(x)]

becomes
d

dx

2y′(x)

x
= 0 ⇒ 2y′(x)

x
= C

for some constant C. So

y′(x) =
Cx

2
⇒ y(x) =

1

4
Cx2 +D

Insert the boundary conditions from D, y(1) = 0 and y(2) = 3, and the solution
becomes

y(x) = x2 − 1

which is a minimizer, since F is strictly convex on D

b) In this case, we want to minimize

F̃ (y) =

∫ 2

1

y′(x)2

x
dx+ λ

∫ 2

1

y(x)dx

over D, The Euler-Lagrange equations becomes

d

dx

2y′(x)

x
= λ
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with solution
y(x) =

1

6
λx2 +

1

2
Cx2 +D

Insert the boundary conditions gives C = 2− 7λ/9 and D = −1 + 2λ/9, so

y(x) =
1

6
λx3 +

1

2

(
2− 7

9
λ

)
x2 − 1 +

2

9
λ

Finally, λ is determined from the constraint:∫ 2

1

y(x)dx =
4

3
− 13

216
λ = 1 ⇒ λ = 72/13

and the solution becomes

y(x) =
1

13
(12x3 − 15x2 + 3).

Since the constraint is linear and thus convex, F̃ is strictly convex, and y(x)
is the minimizer of the constrained problem.
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Problem 5 Consider the integral functional

J(y) =

∫ 1

0

(
y(x) +

(y′(x))2

2
+ y(x) · y′′(x)

)
dx

for y ∈ C2[0, 1].

a) Find the Gâteaux derivative δJ(y; v) of J .

b) Find y ∈ C2[0, 1] such that δJ(y; v) = 0 for all v ∈ C2[0, 1].

Is this a minimizer of J? Justify your answer.

Solution:

a) Use

δJ(y; v) =
∂

∂ε
J(u+ εv)|ε=0.

which becomes

δJ(y; v) =

∫ 1

0

∂

∂ε

(
(y + εv) +

(y′ + εv′)2

2
+ (y + εv) · (y′′ + εv′′)

)
|ε=0 dx

=

∫ 1

0

(v + y′v′ + y′′v + yv′′) dx

By using partial integration the Gâteaux derivative can be rewritten:

δJ(y; v) =

∫ 1

0

vdx−
∫ 1

0

y′′vdx+ y′v|10 +

∫ 1

0

y′′vdx+

∫ 1

0

y′′vdx+ yv′|10 − y′v|10

=

∫ 1

0

(1 + y′′)vdx+ yv′|10 (1)

b) From (1) we have that this is true if

1 + y′′ = 0, and y(0) = y(1) = 0.

which is
y(x) =

1

2
x(1− x).

This is not a minimizer, nor a maximizer. F.inst. y(x) = K (some constant)
is a function in C2[0, 1]. For this choice of y(x), J(y) = K which can be as
small or large we want. So J do not have ha minimizer.


