Tutorial: Thursday 24.01 16:15-17:00 in Kjl 4.

1 Consider the problem

$$
\min _{(x, y) \in \Omega \subset \mathbb{R}^{2}}\left\{x^{2}+4 y^{2}-2 x-8 y\right\}
$$

where Ω is defined by the conditions (constraints)

$$
\begin{aligned}
x, y & \geq 0, \\
5 x+2 y & \leq 4 .
\end{aligned}
$$

(Here and later: $x \geq 0$ for a vector in \mathbb{R}^{n} means $x_{i} \geq 0$ for $i=1,2, \ldots, n$. For matrices, $A \geq 0$ means positive semidefinite.)

Prove that Ω is convex and f is strictly convex. Do we have a solution and is it unique? Solve the problem in some way or another.

2 a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function where $\nabla^{2} f(x)$ exists and is positive semi-definite, i.e. $\nabla^{2} f(x) \geq 0$ at all points. Show that f is convex (Hint: Apply the theorem in the Basic Mathematical Tools note about the graph of functions being above their tangent planes).
What can you say if $\nabla^{2} f(x)$ is positive definite, that is, $\nabla^{2} f(x)>0$?
b) If $0 \neq a \in \mathbb{R}^{n}$ and $\beta \in \mathbb{R}$, the set S defined by

$$
S=\left\{x \mid a^{\mathrm{T}} x \geq \beta\right\}
$$

defines what is called a half-space. Show that it is convex by applying the definition for a convex set. Also show that the set

$$
\left\{x \mid A x \geq b, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}\right\}
$$

is convex. (Hint: Apply the result about the intersection of convex sets.)
c) Determine all minima of the function

$$
f(x, y)=x^{2}+y^{2}-2 y x-2 y+2 x+5
$$

when (x, y) are free to vary over \mathbb{R}^{2}.
d) Sketch how the result of \mathbf{b}) and \mathbf{c}) could be used to find all solutions of

$$
\min f(x, y)
$$

when (x, y) are restricted to satisfy

$$
A\left[\begin{array}{l}
x \tag{1}\\
y
\end{array}\right] \geq b
$$

where $f(x, y)$ is the function in \mathbf{c}), $A \in \mathbb{R}^{m \times 2}, b \in \mathbb{R}^{m}$, and we know that one of the solutions in \mathbf{c}) satisfies the inequality (1).
(Show that if we apply what we know from c), all 2-dimensional inequalities in (1) reduce to simple one-dimensional inequalities).

3 A very common optimization problem is the following:

$$
\begin{gathered}
\min _{x \in \mathbb{R}_{+}^{n}} f(x) \\
\mathbb{R}_{+}^{n}=\left\{x \mid x_{i} \geq 0, i=1, \ldots, n\right\}
\end{gathered}
$$

Here, \mathbb{R}_{+}^{n} is the non-negative cone in \mathbb{R}^{n}, and the problem is therefore to find the minimum for x-es where all components are non-negative. We assume that ∇f exists in all points.
Consider the following line-search algorithm: If we are at $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}$, the search direction, $p=\left(p_{1}, \ldots, p_{n}\right)^{\mathrm{T}}$, is selected as follows:

$$
p_{i}= \begin{cases}-\frac{\partial f}{\partial x_{i}}, & \text { if } x_{i}>0 \text { or } \frac{\partial f}{\partial x_{i}}<0 \\ 0, & \text { if } x_{i}=0 \text { and } \frac{\partial f}{\partial x_{i}} \geq 0\end{cases}
$$

a) What are the first-order conditions for a minimum point for this problem? (Hint: First-order conditions for a minimum are most easily explained in term of the directional derivatives, which have to be non-negative for all feasible directions $d, \delta f(x, d)=\nabla f(x)^{\mathrm{T}} d \geq 0$. Use this to find the conditions on $\frac{\partial f}{\partial x_{i}}$, both for interior points and the boundary points.)
b) Show that $p=0$ at a point satisfying the first-order conditions. (Hint: Apply the result from \mathbf{a}).)
c) Show that any $p \neq 0$ is a descent direction. (The direction d is a descent direction if $\delta f(x, d)<0$.)

