Norwegian University of Science and Technology
Department of Mathematical
Sciences
Exercise set 6

This set of problems requires access to Matlab/Matlab Optimization Toolbox. The problems are taken from [1]. The solutions should be obvious, at least after you have seen the numerical solutions.

1 Find the minimum of Wood's function

$$
\begin{aligned}
f(x) & =100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}+90\left(x_{4}-x_{3}^{2}\right)^{2}+\left(1-x_{3}\right)^{2} \\
& +10.1\left[\left(x_{2}-1\right)^{2}+\left(x_{4}-1\right)^{2}\right]+19.8\left(1-x_{2}\right)\left(1-x_{4}\right), \\
x & \in \mathbb{R}^{4}
\end{aligned}
$$

using both fminsearch and fminunc. Set 'Display' to 'iter'.
Suggested starting point: $x_{0}=[-3-1-3-1]^{\prime}$, where $f\left(x_{0}\right)=19192$.

2 Find the minimum of Bigg's function

$$
\begin{aligned}
f(x) & =\sum_{i=1}^{10} h_{i}(x)^{2}=\sum_{i=1}^{10}\left\{\exp \left(-x_{1} z_{i}\right)-x_{3} \exp \left(-x_{2} z_{i}\right)-y_{i}\right\}^{2}, \\
y_{i} & =\exp \left(-z_{i}\right)-5 \exp \left(-10 z_{i}\right), \\
z_{i} & =0.1 \times i, i=1, \cdots, 10, x \in \mathbb{R}^{3}
\end{aligned}
$$

using the Least Square algorithm lsqnonlin. Write a function that computes both $h(x)$ and and $J(x)$ (Remember to set 'Jacobian' to 'on').
Suggested start value: $x_{0}=\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{\prime}$, where $f\left(x_{0}\right)=1.55347 \ldots$
Warning: We have experienced some problems with older version of the routine.

3 Find the minimum of

$$
\begin{aligned}
f(x) & =x^{\prime} A x-2 x_{1}, \\
A & =\left[\begin{array}{cccccc}
1 & -1 & & & & \\
-1 & 2 & -1 & & 0 & \\
& \ddots & 2 & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& 0 & & -1 & 2 & -1 \\
& & & & -1 & 2
\end{array}\right], \\
x & \in \mathbb{R}^{20} .
\end{aligned}
$$

Start at $x=0$ (In the objective function, x_{1} denotes the first component of x).

References

[1] K. Schittkovski: More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Math. Systems No. 282, Springer 1987.

