Tutorial: Thursday 07.03 16:15-17:00 in Kjl 4.

1 Problem 12.17 in N\&W p. 353.

2 (Midterm Exam 2010)
Consider the following constrained optimization problem for $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$:

$$
\begin{equation*}
\min _{x \in \Omega}\left\{-4 x_{1}-x_{2}\right\}, \tag{1}
\end{equation*}
$$

where Ω is defined in terms of the constraints

$$
\begin{align*}
0 & \leq x_{1} \leq 2, \tag{2}\\
0 & \leq x_{2}, \tag{3}\\
x_{2} & \leq 3-x_{1} . \tag{4}
\end{align*}
$$

a) Reformulate the constraints into four constraints of the form

$$
\begin{equation*}
c_{i}(x) \geq 0, i=1, \cdots, 4 \tag{5}
\end{equation*}
$$

and write down all KKT-equations and inequalities.
b) Solve the problem graphically by making a sketch of Ω.
c) Identify the active and inactive constraints and the corresponding Lagrange multipliers at the solution.

3 Problem 12.21 in N\&W, p. 354.

4 Consider the problem

$$
\begin{aligned}
& \quad \min \left(x_{2}+x_{3}\right), \\
& x \in \Omega=\left\{x ; x_{1}+x_{2}+x_{3}=1, x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \geq 1\right\} .
\end{aligned}
$$

Note that the feasible domain is unbounded.
a) Show that the only KKT-point for the problem is $(-1,2,2)^{\mathrm{T}} / 3$.
b) Use the second order conditions to investigate whether this KKT-point really is a local minimum.

