Tutorial: Thursday 14 16:15-17:00 in Kjl 4.

1 Let $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n},\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2},\left\{y_{k}\right\}_{k=1}^{K}$ be a set of K given vectors in \mathbb{R}^{n}, and define $f(x)$ by

$$
f(x)=\frac{1}{2 K} \sum_{k=1}^{K}\left\|x-y_{k}\right\|^{2}
$$

Consider the problem

$$
\min f(x)
$$

when

$$
A x=b
$$

and A is an $r \times n$ matrix with (full) rank $r<n$.
a) Show, without using part b), that this problem has a unique solution.

Hint: Show that the feasible domain $\Omega=\{x \mid A x=b\}$ is convex and non-empty, and that the function f is strictly convex and tends to infinity when $\|x\| \rightarrow \infty$.
b) Write down the KKT conditions for the problem and show that the unique solution x^{*} is

$$
\begin{aligned}
x^{*} & =\bar{x}+A^{\mathrm{T}}\left(A A^{\mathrm{T}}\right)^{-1}(b-A \bar{x}) \\
\bar{x} & =\frac{1}{K} \sum_{k=1}^{K} y_{k}
\end{aligned}
$$

c) How will the KKT conditions be modified if some of the equations are replaced by inequalities, e.g.

$$
a_{i} x-b_{i} \geq 0, \quad i \in \mathcal{I} \subset\{1, \ldots, r\},
$$

where a_{i} is row vector i of A ? When will x^{*} still be a solution?

2 a) Write the LP problem

$$
\begin{gathered}
\max \left(-x_{1}+x_{2}\right) \\
x_{1} \leq 2+x_{2} \\
6-x_{2} \geq x_{1}
\end{gathered}
$$

on standard form,

$$
\begin{gathered}
\min \left(c^{\mathrm{T}} x\right) \\
A x=b \\
x \geq 0
\end{gathered}
$$

b) Solve Problem 13.1 (p. 389) in N\&W.

3 Determine and solve the dual problem to the primal problem

$$
\begin{gathered}
\min \left(5 x_{1}+3 x_{2}+4 x_{3}\right), \\
x_{1}+x_{2}+x_{3}=1, \\
x_{i} \geq 0, \quad i=1,2,3 .
\end{gathered}
$$

4 Solve the following LP problem by using the Matlab Optimization Toolbox:

$$
\begin{gathered}
\min \left(c^{\mathrm{T}} x\right) \\
A x \leq b, \\
x \geq 0
\end{gathered}
$$

where

$$
\begin{gathered}
c^{\mathrm{T}}=\left[\begin{array}{llr}
-120 & 32 & -48 \\
-64
\end{array}\right], \\
A=\left[\begin{array}{rrrr}
3 & 2 & -1 & 4 \\
-1 & 2 & 3 & 12 \\
4 & 3 & 5 & 21 \\
8 & 3 & 4 & 5 \\
6 & 2 & 4 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
42 \\
36 \\
45 \\
28 \\
14
\end{array}\right] .
\end{gathered}
$$

