Tutorial: Thursday 25 16:15-17:00 in El 1 (NB! Change of room).

1 Troutman, Problem 1.2.
Hints: The transit time from $(0,0)$ to $(1,1)$ along a path $y(x)$, where $y(0)=0$, $y(1)=1$, is given by

$$
T=\frac{1}{\sqrt{2 g}} \int_{0}^{1}\left(\frac{1+y^{\prime}(x)^{2}}{y(x)}\right)^{1 / 2} \mathrm{~d} x
$$

and the problem is a technical exercise in estimating the value of this integral for various paths, $y=y(t)$.
For (c) you may use that

$$
\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{(\sin \theta)^{1 / 2}}=\frac{1}{2} \pi^{3 / 2} \frac{\sqrt{2}}{\Gamma(3 / 4)^{2}} \approx 2.622
$$

Point (e) seems to be tricky, so try the not-so-obvious inequality

$$
\sin \theta \geq \theta-\theta^{2} / \pi, \quad 0 \leq \theta \leq \pi / 2
$$

Maybe you see a simpler way!

2 Troutman, Problem 2.5 (a), (c), (e).
Hints: In some of these and following problems you'll need to put $\mathrm{d} / \mathrm{d} \varepsilon$ inside the integral sign,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \int_{a}^{b} h(x, \varepsilon) \mathrm{d} x=\int_{a}^{b} \frac{\partial h(x, \varepsilon)}{\partial \varepsilon} \mathrm{d} x . \tag{1}
\end{equation*}
$$

Theorem A. 13 in Troutman is a simple sufficient condition for this to be allowed: Assume that $[a, b]$ is finite and h as well as $\partial h / \partial \varepsilon$ are continuous on $[a, b] \times[\alpha, \beta]$. Then (1) holds for all $\varepsilon \in[\alpha, \beta]$.
All problems are most easily solved by applying the formula

$$
\delta J(y ; v)=\left.\frac{\partial}{\partial \varepsilon} J(y+\varepsilon v)\right|_{\varepsilon=0} .
$$

3 Troutman, Problem 2.10 (a).
Hint: Use that $J(y+\varepsilon v)-J(y)=\varepsilon \delta J(y ; v)+o(\varepsilon)$.

4 Troutman, Problem 2.12.
Hint: Consider also the convexity of this functional.

5 Troutman, Problem 3.6.

6 Troutman, Problem 3.7.

7 Troutman, Problem 3.28.
Hint: Verify that the given solution satisfies the Euler equation and the constraints.

8 Troutman, Problem 3.29.
Hint: The solution is a surprise!

