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1 Consider the problem
min

(x,y)∈Ω⊂R2
{x2 + 4y2 − 2x− 8y}

where Ω is defined by the conditions (constraints)

x, y ≥ 0,

5x+ 2y ≤ 4.

(Here and later: x ≥ 0 for a vector in Rn means xi ≥ 0 for i = 1, 2, . . . , n. For
matrices, A ≥ 0 means positive semidefinite.)

Prove that Ω is convex and f is strictly convex. Do we have a solution and is it
unique? Solve the problem in some way or another.

Solution: The constraints limit our domain Ω, to a triangle in the first quadrant with
corners (0, 0), (4/5, 0), and (0, 2). The problem is immediately solvable by inspection
and simple sketches. However, Ω is convex and f is strictly convex, since

f(x, y) = −
[
2 8

] [x
y

]
+
[
x y

] [1 0
0 4

] [
x
y

]
.

If we find a (local) minimum, this will be the unique global minimum! The uncon-
strained minimum follows from

∂f

∂x
= 2x− 2 = 0,

∂f

∂y
= 8y − 8 = 0,

that is, xm = (1, 1), but this is not in Ω. All minima have to be on the boundaries,
and the line segment from (0, 2) to (4/5, 0) is closest to xm. We express the function
in x only and find

f

(
x,

4− 5x

2

)
= x2 + 4

(
4− 5x

2

)2

− 2x− 8

(
4− 5x

2

)
= 26x2 − 22x,

with a minimum at x0 = 22/52 = 11/26, and y0 = 4−5x0
2 = 49/52.

We expect that the negative gradient at (x0, y0) will point in the general direction of
xm, and (x0, y0) will be the minimum if ∇f(x0, y0) is parallel to the normal of the
line. This is easily seen to be true with

∇f(x0, y0) =

[
2x0 − 2
8y0 − 8

]
= − 3

13

[
5
2

]
.

Thus, (x0, y0) is our unique global minimum.
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2 a) Let f : Rn → R be a differentiable function where ∇2f(x) exists and is positive
semi-definite, i.e. ∇2f(x) ≥ 0 at all points. Show that f is convex (Hint : Apply
the theorem in the Basic Mathematical Tools note about the graph of functions
being above their tangent planes).
What can you say if ∇2f(x) is positive definite, that is, ∇2f(x) > 0?
Solution: We use Taylor’s theorem:

f(x) = f(x0) +∇f(x0)T(x− x0) + 1
2(x− x0)T∇2f(xθ)(x− x0).

But T (x) = f(x0) + ∇f(x0)T(x − x0) is the tangent plane in x0, and the last
term 1

2(x − x0)T∇2f(xθ)(x − x0) ≥ 0 by assumption. Hence f is above all
tangent planes. If ∇2f(xθ) > 0, the function will be strictly convex.

b) If 0 6= a ∈ Rn and β ∈ R, the set S defined by

S = {x | aTx ≥ β}

defines what is called a half-space. Show that it is convex by applying the
definition for a convex set. Also show that the set

{x | Ax ≥ b, x ∈ Rn, b ∈ Rm, A ∈ Rm×n}

is convex. (Hint : Apply the result about the intersection of convex sets.)

Solution: The equation for a plane in Rn through x0, having a normal vector
a, is exactly similar to the equation we know from R3:

P = {x | aT(x− x0) = 0} = {x | aTx = b},

where b = aTx0 (this is called a hyperplane when n > 3). A hyperplane splits
the space in two half-spaces

P+ = {x | aTx ≥ b},
P− = {x | aTx ≤ b},

having the plane defined by aTx = b in common. Both are easily seen to be
convex: For P−, with x, y ∈ P− and xθ = θx+ (1− θ)y, we have

aTxθ = aT(θx+ (1− θ)y) = θaTx+ (1− θ)aTy ≤ θb+ (1− θ)b = b.

We now observe that

{x | Ax ≥ b, x ∈ Rn, b ∈ Rm} = {x | aT
j x ≥ bj , x ∈ Rn, j = 1, . . . ,m}

=
m⋂
j=1

{x | aT
j x ≥ bj , x ∈ Rn},

and intersections of convex sets are convex.

c) Determine all minima of the function

f(x, y) = x2 + y2 − 2yx− 2y + 2x+ 5

when (x, y) are free to vary over R2.
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Solution: This is an unconstrained problems where

∇f(x) =

[
2x− 2y + 2
2y − 2x− 2

]
,

and

∇2f(x) =

[
2 −2
−2 2

]
≥ 0.

The minima are along the line y = x + 1 since the function is convex and the
points on the line solve ∇f(x) = 0.

d) Sketch how the result of b) and c) could be used to find all solutions of

min f(x, y),

when (x, y) are restricted to satisfy

A

[
x
y

]
≥ b, (1)

where f(x, y) is the function in c), A ∈ Rm×2, b ∈ Rm, and we know that one
of the solutions in c) satisfies the inequality (1).
(Show that if we apply what we know from c), all 2-dimensional inequalities in
(1) reduce to simple one-dimensional inequalities).

Solution: The constraints are all of the form

aj1x+ aj2y ≥ bj , j = 1, . . . ,m, (2)

and defines a convex set in the plane. The solution set is the intersection of this
set and the line y = x + 1. If the equation for the line is introduced into (??),
we obtain a set of simple one-dimensional inequalities

(aj1 + aj2)x ≥ bj − aj2, j = 1, . . . ,m,

which may be inspected in turn.

3 A very common optimization problem is the following:

min
x∈Rn

+

f(x),

Rn+ = {x | xi ≥ 0, i = 1, . . . , n}.

Here, Rn+ is the non-negative cone in Rn, and the problem is therefore to find the
minimum for x-es where all components are non-negative. We assume that ∇f exists
in all points.

Consider the following line-search algorithm: If we are at x = (x1, . . . , xn)T, the
search direction, p = (p1, . . . , pn)T, is selected as follows:

pi =

{
− ∂f
∂xi
, if xi > 0 or ∂f

∂xi
< 0,

0, if xi = 0 and ∂f
∂xi
≥ 0.
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a) What are the first-order conditions for a minimum point for this problem?
(Hint : First-order conditions for a minimum are most easily explained in term
of the directional derivatives, which have to be non-negative for all feasible di-
rections d, δf(x, d) = ∇f(x)Td ≥ 0. Use this to find the conditions on ∂f

∂xi
,

both for interior points and the boundary points.)
Solution: Necessary first-order conditions defined in terms of the directional
derivative, which has to be non-negative in all feasible directions d; in this case,

δf(x, d) = ∇f(x)Td ≥ 0.

Thus, at an interior point where d is free to vary,

∇f(x) = 0.

For a boundary point x = {xi}ni=1, the feasible directions must point into Ω,
and hence the components di of d, must be non-negative whenever xi = 0. This
implies that

∂f

∂xi
(x) =

{
0, xi > 0,

non-negative, xi = 0.

b) Show that p = 0 at a point satisfying the first-order conditions. (Hint : Apply
the result from a).)
Solution: This follows from a) and the definition of p.

c) Show that any p 6= 0 is a descent direction. (The direction d is a descent
direction if δf(x, d) < 0.)
Solution: The definition of p gives immediately that

∇f(x)Tp =
∑

1≤i≤n
pi 6=0

∂f

∂xi
·
(
− ∂f
∂xi

)
= −

n∑
i=1

|pi|2 = −‖p‖2 < 0,

and p is really a descent direction.
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