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and Technology Exercise set 1
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Sciences

Tutorial: Thursday 24.01 16:15-17:00 in Kjl 4.

Consider the problem

. 2 2
min 7+ 4y —2x — 8
(m,y)EQCRQ{ Y y}

where (2 is defined by the conditions (constraints)

z,y >0,
ox + 2y < 4.
(Here and later: = > 0 for a vector in R™ means x; > 0 for i = 1,2,...,n. For
matrices, A > 0 means positive semidefinite.)

Prove that € is convex and f is strictly convex. Do we have a solution and is it
unique? Solve the problem in some way or another.

Solution: The constraints limit our domain ), to a triangle in the first quadrant with
corners (0,0), (4/5,0), and (0,2). The problem is immediately solvable by inspection
and simple sketches. However, §) is convex and f is strictly conver, since

ren ==L 82+l o]y 4 [2]

If we find a (local) minimum, this will be the unique global minimum! The uncon-
strained minimum follows from

ﬁ =2z —-2=0, g =

oz y
that is, xm;m = (1,1), but this is not in Q. All minima have to be on the boundaries,
and the line segment from (0,2) to (4/5,0) is closest to x,,. We express the function

in x only and find

4— 4—5z2\2 4—
f(:c, 25$>:x2+4< 25:”) —23:—8( 2556):26372—229:,

with a minimum at xg = 22/52 = 11/26, and yo = 2220 = 49/52.

8y —8=0,

We expect that the negative gradient at (xo,yo) will point in the general direction of
Xm, and (zo,yo) will be the minimum if V f(xo,yo) is parallel to the normal of the
line. This is easily seen to be true with

V f(zo,y0) = [zig :g} = —% [2} .

Thus, (zo,y0) is our unique global minimum.
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Exercise set 1

a) Let f: R"® — R be a differentiable function where V2 f(z) exists and is positive

b)

semi-definite, i.e. V2f(z) > 0 at all points. Show that f is convex (Hint: Apply
the theorem in the Basic Mathematical Tools note about the graph of functions
being above their tangent planes).

What can you say if V2f(x) is positive definite, that is, V2f(z) > 0?
Solution: We use Taylor’s theorem:

f(x) = flzo) + V(o) (x — x0) + 3(z — 20) T V2 f(xg)(z — o).

But T(x) = f(zo) + Vf(20)T(z — z0) is the tangent plane in xo, and the last

term 3 (z — 20)TV2f(wg)(x — mo) > 0 by assumption. Hence f is above all

tangent planes. If V2 f(xg) > 0, the function will be strictly convez.
If 0 #a € R" and § € R, the set S defined by

S ={z|atz>p}

defines what is called a half-space. Show that it is convex by applying the
definition for a convex set. Also show that the set

{z| Az > b,z e R",b e R™, A € R™*"}

is convex. (Hint: Apply the result about the intersection of convex sets.)

Solution:  The equation for a plane in R™ through xo, having a normal vector
a, is exactly similar to the equation we know from R3:

P={z|aY(z—x0) =0} ={z|alz =0b},

where b = aTxqy (this is called a hyperplane when n > 3). A hyperplane splits
the space in two half-spaces

Pt ={z|a x> b},

P~ ={z|avz <b},

having the plane defined by a*x = b in common. Both are easily seen to be
convex: For P, with x,y € P~ and x9 = 0z + (1 — 0)y, we have

aTzg=a(Oz+ (1 —-0)y) =0az+ (1 —0)a’y < Ob+ (1 —6)b=h.
We now observe that
{:E|AmZb,xGRn,bERm}:{x|a;erbj,x€]R”,j:17...,m}

m
= ﬂ{x | a;rx >bj,x € R"},
j=1

and intersections of convex sets are convex.
Determine all minima of the function
flzy) =" +y° =2y — 2y + 22 +5

when (x,7) are free to vary over R2.
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Exercise set 1

Solution: This is an unconstrained problems where

[ 2]

and
S I

The minima are along the line y = x + 1 since the function is convex and the
points on the line solve V f(x) = 0.

d) Sketch how the result of b) and c¢) could be used to find all solutions of

min f(z,y),

when (z,y) are restricted to satisfy

A m > b, (1)

where f(x,y) is the function in ¢), A € R™*2 b € R™, and we know that one
of the solutions in c) satisfies the inequality (1).

(Show that if we apply what we know from c), all 2-dimensional inequalities in
(1) reduce to simple one-dimensional inequalities).

Solution: The constraints are all of the form
aj1x+a/j2y2bj7 j:17"'7m7 (2)

and defines a convex set in the plane. The solution set is the intersection of this
set and the line y = x + 1. If the equation for the line is introduced into (?77),
we obtain a set of simple one-dimensional inequalities

(CL]'1+CLJ‘2)ZL‘ZI)J'*CL]'2, j=1...,m,

which may be inspected in turn.

A very common optimization problem is the following:

nin f(z),

RY ={z|x;>0,i=1,...,n}.
Here, R" is the non-negative cone in R", and the problem is therefore to find the

minimum for xz-es where all components are non-negative. We assume that V f exists
in all points.

Consider the following line-search algorithm: If we are at = (x1,...,2,)", the
search direction, p = (p1,...,pn)", is selected as follows:
o _é%’ if:vi>00rg—:£<0,
"o, if 7; = 0 and L > 0.
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Exercise set 1

a) What are the first-order conditions for a minimum point for this problem?

b)

(Hint: First-order conditions for a minimum are most easily explained in term
of the directional derivatives, which have to be non-negative for all feasible di-
rections d, 6f(x,d) = Vf(z)Td > 0. Use this to find the conditions on g—g{i,
both for interior points and the boundary points.)

Solution:  Necessary first-order conditions defined in terms of the directional
derivative, which has to be non-negative in all feasible directions d; in this case,

5f(x,d) = Vf(z)Td>o0.
Thus, at an interior point where d is free to vary,
Vf(x)=0.

For a boundary point x = {x;}]', the feasible directions must point into €2,
and hence the components d; of d, must be non-negative whenever x; = 0. This
implies that

8f():{0, z; > 0,

x .
Ox; non-negative, x; = 0.

Show that p = 0 at a point satisfying the first-order conditions. (Hint: Apply
the result from a).)
Solution:  This follows from a) and the definition of p.

Show that any p # 0 is a descent direction. (The direction d is a descent
direction if 0 f(z,d) < 0.)
Solution: The definition of p gives immediately that

0 0 =
V= Y oL (—af) ==Y Inil? = —Ipl? <o,
! ! i=1

1<i<n
pi#0

and p is really a descent direction.
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