Tutorial: Thursday 24.01 16:15-17:00 in Kjl 4.

1 Consider the problem

$$
\min _{(x, y) \in \Omega \subset \mathbb{R}^{2}}\left\{x^{2}+4 y^{2}-2 x-8 y\right\}
$$

where Ω is defined by the conditions (constraints)

$$
\begin{array}{r}
x, y \geq 0 \\
5 x+2 y \leq 4 .
\end{array}
$$

(Here and later: $x \geq 0$ for a vector in \mathbb{R}^{n} means $x_{i} \geq 0$ for $i=1,2, \ldots, n$. For matrices, $A \geq 0$ means positive semidefinite.)
Prove that Ω is convex and f is strictly convex. Do we have a solution and is it unique? Solve the problem in some way or another.

Solution: The constraints limit our domain Ω, to a triangle in the first quadrant with corners $(0,0),(4 / 5,0)$, and $(0,2)$. The problem is immediately solvable by inspection and simple sketches. However, Ω is convex and f is strictly convex, since

$$
f(x, y)=-\left[\begin{array}{ll}
2 & 8
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

If we find a (local) minimum, this will be the unique global minimum! The unconstrained minimum follows from

$$
\frac{\partial f}{\partial x}=2 x-2=0, \quad \frac{\partial f}{\partial y}=8 y-8=0
$$

that is, $\mathbf{x}_{m}=(1,1)$, but this is not in Ω. All minima have to be on the boundaries, and the line segment from $(0,2)$ to $(4 / 5,0)$ is closest to \mathbf{x}_{m}. We express the function in x only and find

$$
f\left(x, \frac{4-5 x}{2}\right)=x^{2}+4\left(\frac{4-5 x}{2}\right)^{2}-2 x-8\left(\frac{4-5 x}{2}\right)=26 x^{2}-22 x,
$$

with a minimum at $x_{0}=22 / 52=11 / 26$, and $y_{0}=\frac{4-5 x_{0}}{2}=49 / 52$.
We expect that the negative gradient at (x_{0}, y_{0}) will point in the general direction of \mathbf{x}_{m}, and $\left(x_{0}, y_{0}\right)$ will be the minimum if $\nabla f\left(x_{0}, y_{0}\right)$ is parallel to the normal of the line. This is easily seen to be true with

$$
\nabla f\left(x_{0}, y_{0}\right)=\left[\begin{array}{l}
2 x_{0}-2 \\
8 y_{0}-8
\end{array}\right]=-\frac{3}{13}\left[\begin{array}{l}
5 \\
2
\end{array}\right] .
$$

Thus, $\left(x_{0}, y_{0}\right)$ is our unique global minimum.

2 a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function where $\nabla^{2} f(x)$ exists and is positive semi-definite, i.e. $\nabla^{2} f(x) \geq 0$ at all points. Show that f is convex (Hint: Apply the theorem in the Basic Mathematical Tools note about the graph of functions being above their tangent planes).
What can you say if $\nabla^{2} f(x)$ is positive definite, that is, $\nabla^{2} f(x)>0$?
Solution: We use Taylor's theorem:

$$
f(x)=f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{\mathrm{T}}\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{\mathrm{T}} \nabla^{2} f\left(x_{\theta}\right)\left(x-x_{0}\right) .
$$

But $T(x)=f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{\mathrm{T}}\left(x-x_{0}\right)$ is the tangent plane in x_{0}, and the last term $\frac{1}{2}\left(x-x_{0}\right)^{\mathrm{T}} \nabla^{2} f\left(x_{\theta}\right)\left(x-x_{0}\right) \geq 0$ by assumption. Hence f is above all tangent planes. If $\nabla^{2} f\left(x_{\theta}\right)>0$, the function will be strictly convex.
b) If $0 \neq a \in \mathbb{R}^{n}$ and $\beta \in \mathbb{R}$, the set S defined by

$$
S=\left\{x \mid a^{\mathrm{T}} x \geq \beta\right\}
$$

defines what is called a half-space. Show that it is convex by applying the definition for a convex set. Also show that the set

$$
\left\{x \mid A x \geq b, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}\right\}
$$

is convex. (Hint: Apply the result about the intersection of convex sets.)
Solution: The equation for a plane in \mathbb{R}^{n} through x_{0}, having a normal vector a, is exactly similar to the equation we know from \mathbb{R}^{3} :

$$
P=\left\{x \mid a^{\mathrm{T}}\left(x-x_{0}\right)=0\right\}=\left\{x \mid a^{\mathrm{T}} x=b\right\},
$$

where $b=a^{\mathrm{T}} x_{0}$ (this is called a hyperplane when $n>3$). A hyperplane splits the space in two half-spaces

$$
\begin{aligned}
& P^{+}=\left\{x \mid a^{\mathrm{T}} x \geq b\right\}, \\
& P^{-}=\left\{x \mid a^{\mathrm{T}} x \leq b\right\},
\end{aligned}
$$

having the plane defined by $a^{\mathrm{T}} x=b$ in common. Both are easily seen to be convex: For P^{-}, with $x, y \in P^{-}$and $x_{\theta}=\theta x+(1-\theta) y$, we have

$$
a^{\mathrm{T}} x_{\theta}=a^{\mathrm{T}}(\theta x+(1-\theta) y)=\theta a^{\mathrm{T}} x+(1-\theta) a^{\mathrm{T}} y \leq \theta b+(1-\theta) b=b .
$$

We now observe that

$$
\begin{aligned}
\left\{x \mid A x \geq b, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}\right\} & =\left\{x \mid a_{j}^{\mathrm{T}} x \geq b_{j}, x \in \mathbb{R}^{n}, j=1, \ldots, m\right\} \\
& =\bigcap_{j=1}^{m}\left\{x \mid a_{j}^{\mathrm{T}} x \geq b_{j}, x \in \mathbb{R}^{n}\right\},
\end{aligned}
$$

and intersections of convex sets are convex.
c) Determine all minima of the function

$$
f(x, y)=x^{2}+y^{2}-2 y x-2 y+2 x+5
$$

when (x, y) are free to vary over \mathbb{R}^{2}.

Solution: This is an unconstrained problems where

$$
\nabla f(\mathbf{x})=\left[\begin{array}{l}
2 x-2 y+2 \\
2 y-2 x-2
\end{array}\right]
$$

and

$$
\nabla^{2} f(\mathbf{x})=\left[\begin{array}{rr}
2 & -2 \\
-2 & 2
\end{array}\right] \geq 0
$$

The minima are along the line $y=x+1$ since the function is convex and the points on the line solve $\nabla f(\mathbf{x})=0$.
d) Sketch how the result of \mathbf{b}) and \mathbf{c}) could be used to find all solutions of

$$
\min f(x, y)
$$

when (x, y) are restricted to satisfy

$$
A\left[\begin{array}{l}
x \tag{1}\\
y
\end{array}\right] \geq b
$$

where $f(x, y)$ is the function in $\mathbf{c}), A \in \mathbb{R}^{m \times 2}, b \in \mathbb{R}^{m}$, and we know that one of the solutions in \mathbf{c}) satisfies the inequality (1).
(Show that if we apply what we know from c), all 2-dimensional inequalities in (1) reduce to simple one-dimensional inequalities).

Solution: The constraints are all of the form

$$
\begin{equation*}
a_{j 1} x+a_{j 2} y \geq b_{j}, \quad j=1, \ldots, m \tag{2}
\end{equation*}
$$

and defines a convex set in the plane. The solution set is the intersection of this set and the line $y=x+1$. If the equation for the line is introduced into (??), we obtain a set of simple one-dimensional inequalities

$$
\left(a_{j 1}+a_{j 2}\right) x \geq b_{j}-a_{j 2}, \quad j=1, \ldots, m
$$

which may be inspected in turn.

3 A very common optimization problem is the following:

$$
\begin{gathered}
\min _{x \in \mathbb{R}_{+}^{n}} f(x) \\
\mathbb{R}_{+}^{n}=\left\{x \mid x_{i} \geq 0, i=1, \ldots, n\right\}
\end{gathered}
$$

Here, \mathbb{R}_{+}^{n} is the non-negative cone in \mathbb{R}^{n}, and the problem is therefore to find the minimum for x-es where all components are non-negative. We assume that ∇f exists in all points.
Consider the following line-search algorithm: If we are at $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}$, the search direction, $p=\left(p_{1}, \ldots, p_{n}\right)^{\mathrm{T}}$, is selected as follows:

$$
p_{i}= \begin{cases}-\frac{\partial f}{\partial x_{i}}, & \text { if } x_{i}>0 \text { or } \frac{\partial f}{\partial x_{i}}<0 \\ 0, & \text { if } x_{i}=0 \text { and } \frac{\partial f}{\partial x_{i}} \geq 0\end{cases}
$$

a) What are the first-order conditions for a minimum point for this problem? (Hint: First-order conditions for a minimum are most easily explained in term of the directional derivatives, which have to be non-negative for all feasible directions $d, \delta f(x, d)=\nabla f(x)^{\mathrm{T}} d \geq 0$. Use this to find the conditions on $\frac{\partial f}{\partial x_{i}}$, both for interior points and the boundary points.)
Solution: Necessary first-order conditions defined in terms of the directional derivative, which has to be non-negative in all feasible directions d; in this case,

$$
\delta f(x, d)=\nabla f(x)^{\mathrm{T}} d \geq 0
$$

Thus, at an interior point where d is free to vary,

$$
\nabla f(x)=0
$$

For a boundary point $x=\left\{x_{i}\right\}_{i=1}^{n}$, the feasible directions must point into Ω, and hence the components d_{i} of d, must be non-negative whenever $x_{i}=0$. This implies that

$$
\frac{\partial f}{\partial x_{i}}(x)= \begin{cases}0, & x_{i}>0 \\ \text { non-negative }, & x_{i}=0\end{cases}
$$

b) Show that $p=0$ at a point satisfying the first-order conditions. (Hint: Apply the result from \mathbf{a}).)
Solution: This follows from a) and the definition of p.
c) Show that any $p \neq 0$ is a descent direction. (The direction d is a descent direction if $\delta f(x, d)<0$.)
Solution: The definition of p gives immediately that

$$
\nabla f(x)^{\mathrm{T}} p=\sum_{\substack{1 \leq i \leq n \\ p_{i} \neq 0}} \frac{\partial f}{\partial x_{i}} \cdot\left(-\frac{\partial f}{\partial x_{i}}\right)=-\sum_{i=1}^{n}\left|p_{i}\right|^{2}=-\|p\|^{2}<0
$$

and p is really a descent direction.

