TMA4180 Optimization Theory

Norwegian University of Science and Technology

Exercise set 7
Department of Mathematical
Sciences

Tutorial: Thursday 07.03 16:15-17:00 in Kjl 4.

1 Problem 12.17 in N\&W p. 353.

Solution: From Eqn. 12.31 we have that λ^{*} satisfies the system

$$
\sum_{i \in \mathcal{A}\left(x^{*}\right)} \lambda_{i}^{*} \nabla c_{i}\left(x^{*}\right)=\nabla f\left(x^{*}\right) .
$$

The solution is unique when $\left\{\nabla c_{i}\left(x^{*}\right)\right\}_{i \in \mathcal{A}\left(x^{*}\right)}$ are linearly independent (which is the LICQ condition!). Then the equation

$$
\sum_{i \in \mathcal{A}\left(x^{*}\right)} z_{i} \nabla c_{i}\left(x^{*}\right)=0
$$

will only have the 0 -solution, and λ^{*} is unique.

2 (Midterm Exam 2010)
Consider the following constrained optimization problem for $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$:

$$
\begin{equation*}
\min _{x \in \Omega}\left\{-4 x_{1}-x_{2}\right\}, \tag{1}
\end{equation*}
$$

where Ω is defined in terms of the constraints

$$
\begin{align*}
0 & \leq x_{1} \leq 2, \tag{2}\\
0 & \leq x_{2}, \tag{3}\\
x_{2} & \leq 3-x_{1} . \tag{4}
\end{align*}
$$

a) Reformulate the constraints into four constraints of the form

$$
\begin{equation*}
c_{i}(x) \geq 0, i=1, \cdots, 4, \tag{5}
\end{equation*}
$$

and write down all KKT-equations and inequalities.
b) Solve the problem graphically by making a sketch of Ω.
c) Identify the active and inactive constraints and the corresponding Lagrange multipliers at the solution.

Solution: (a) The constraints may be written

$$
\begin{align*}
& c_{1}(x)=x_{1} \geq 0, \tag{6}\\
& c_{2}(x)=2-x_{1} \geq 0, \tag{7}\\
& c_{3}(x)=x_{2} \geq 0, \tag{8}\\
& c_{4}(x)=3-x_{1}-x_{2} \geq 0 . \tag{9}
\end{align*}
$$

Hence, the Lagrangian is

$$
\begin{equation*}
\mathcal{L}(x, \lambda)=-4 x_{1}-x_{2}-\lambda_{1} x_{1}-\lambda_{2}\left(2-x_{1}\right)-\lambda_{3} x_{2}-\lambda_{4}\left(3-x_{1}-x_{2}\right), \tag{10}
\end{equation*}
$$

and $\nabla_{x} \mathcal{L}(x, \lambda)=0$ gives the equations

$$
\begin{array}{r}
-\lambda_{1}+\lambda_{2}+\lambda_{4}=4, \\
-\lambda_{3}+\lambda_{4}=1, \tag{12}
\end{array}
$$

along with the rest of the KKT equations:

$$
\begin{array}{r}
\lambda_{1} x_{1}=0, \\
\lambda_{2}\left(2-x_{1}\right)=0, \\
\lambda_{3} x_{2}=0, \\
\lambda_{4}\left(3-x_{1}-x_{2}\right)=0, \tag{16}
\end{array}
$$

plus all 4 inequalities in Eqn. (6)-(9), and the requirements $\lambda_{1}, \cdots, \lambda_{4} \geq 0$.
(b) The function $f(x)$ has level curves defined by

$$
\begin{equation*}
-4 x_{1}-x_{2}=\text { const. }, \tag{17}
\end{equation*}
$$

and the negative gradient direction is therefore constant,

$$
\begin{equation*}
-\nabla f^{\prime}=4 \mathbf{i}+\mathbf{j} . \tag{18}
\end{equation*}
$$

This, along with the constraints in Eqn. (6)-(9) that defines Ω is shown in Fig. 1. The solution is clearly $x^{*}=(2,1)^{\prime}$ with $f\left(x^{*}\right)=-4 \times 2-1=-9$.
(c) Eqns. (13)-(16) give that $\lambda_{1}=\lambda_{3}=0$ (c_{1} and c_{3} are not active), whereas c_{2} and c_{4} are active, so that λ_{2} and λ_{4} may be different from 0. It then follows from Eqns. (11) and (12) that

$$
\lambda_{4}=1 \text { and } \lambda_{2}=3 .
$$

As a final check,

$$
\begin{align*}
\nabla f\left(x^{*}\right)^{\prime} & =\lambda_{2} \nabla c_{2}\left(x^{*}\right)^{\prime}+\lambda_{4} \nabla c_{4}\left(x^{*}\right)^{\prime} \\
& =3(-\mathbf{i})+1 \times(-\mathbf{i}-\mathbf{j})=-4 \mathbf{i}-\mathbf{j} . \tag{19}
\end{align*}
$$

3 Problem 12.21 in N\&W, p. 354.
Solution: First change the sign of the objective function $g(x)=-f(x)=-x_{1} x_{2}$.

Figure 1: Graph of the level curves of f, the constant negative gradient vector $-\nabla f^{\prime}$, and Ω.

We easily see that $(0,0)$ is the only interior KKT-point, but this is a saddle-point. On the boundary of Ω the KKT-equations are

$$
\begin{aligned}
\nabla_{x}\left[-x_{1} x_{2}-\lambda\left(1-x_{1}^{2}-x_{2}^{2}\right)\right] & =0 \\
\lambda\left(1-x_{1}^{2}-x_{2}^{2}\right) & =0 \\
\lambda & \geq 0
\end{aligned}
$$

Thus,

$$
\begin{aligned}
-x_{2}+2 \lambda x_{1} & =0, \\
-x_{1}+2 \lambda x_{2} & =0, \\
x_{1}^{2}+x_{2}^{2} & =1, \\
\lambda & >0 .
\end{aligned}
$$

The solutions are $(1 / \sqrt{2}, 1 / \sqrt{2}), \lambda=1 / 2$ and $(-1 / \sqrt{2},-1 / \sqrt{2}), \lambda=1 / 2$. It is quite obvious that these are minima for g and maxima for f. In order to be complete, one should also check the tangent directions to the circle using the second order conditions. Alternatively we could, along the circle, introduce $x_{1}=\cos \theta$ and $x_{2}=\sin \theta$, and observe that $f\left(x_{1}, x_{2}\right)$ is simply equal to $\frac{1}{2} \sin (2 \theta)$.

4 Consider the problem

$$
\begin{aligned}
& \quad \min \left(x_{2}+x_{3}\right) \\
& x \in \Omega=\left\{x ; x_{1}+x_{2}+x_{3}=1, x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \geq 1\right\}
\end{aligned}
$$

Note that the feasible domain is unbounded.
a) Show that the only KKT-point for the problem is $(-1,2,2)^{\mathrm{T}} / 3$.
b) Use the second order conditions to investigate whether this KKT-point really is a local minimum.

Solution: Note that Ω is unbounded, and that $f(x)$ is unbounded below on Ω. We can only hope for local minima, and we observe that Eqn. 12.30a will be

$$
\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \lambda_{1}+\left(\begin{array}{l}
2 x_{1} \\
2 x_{2} \\
2 x_{3}
\end{array}\right) \lambda_{2}
$$

First of all, there are no solutions for $\lambda_{2}=0$. Assuming $\lambda_{2} \neq 0$, we see from the 2nd and 3rd equations above that $x_{2}=x_{3}$. Moreover, the inequality constraint is active since $\lambda_{2}>0$. Hence, writing $x=(y, z, z)^{\prime}$ we have

$$
\begin{aligned}
\lambda_{1}+2 y \lambda_{2} & =0 \\
\lambda_{1}+2 z \lambda_{2} & =1 \\
y+2 z & =1 \\
y^{2}+2 z^{2} & =1
\end{aligned}
$$

The two last equations give the solutions

$$
x_{a}=(1,0,0)^{\prime}, x_{b}=(-1,2,2) / 3
$$

The multipliers are solved from the first pair of equations,

$$
\lambda_{a}=(1,-1 / 2), \quad \lambda_{b}=(1 / 3,1 / 2)
$$

The only KKT-point is therefore x_{b}, but is it a local minimum?
We check the Hessian of the Lagrange function

$$
\begin{aligned}
& \nabla_{x}^{2}\left[x_{2}+x_{3}-\lambda_{1}^{*}\left(x_{1}+x_{2}+x_{3}-1\right)-\lambda_{2}^{*}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)\right] \\
& =-2 \lambda_{2}^{*} I_{3 \times 3}=-I_{3 \times 3}
\end{aligned}
$$

The gradients of the constraints in x_{b} are

$$
\begin{aligned}
& \nabla c_{1}\left(x_{b}\right)=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \\
& \nabla c_{1}\left(x_{b}\right)=\frac{2}{3}\left(\begin{array}{lll}
-1 & 2 & 2
\end{array}\right)
\end{aligned}
$$

and the matrix A (see the notes) is

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-\frac{2}{3} & \frac{4}{3} & \frac{4}{3}
\end{array}\right]
$$

Since A has rank 2, the null space $\mathcal{N}(A)$ is spanned by $\left(\begin{array}{lll}0 & -1 & 1\end{array}\right)^{\prime}$. But no (nonzero) projection of $-I_{3 \times 3}$ will ever be positive semi-definite, so we have to conclude that no local minimum exists.

