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Exercise set 10

Tutorial: Thursday 25 16:15-17:00 in El 1 (NB! Change of room).

1 Troutman, Problem 1.2.

Hints: The transit time from (0, 0) to (1, 1) along a path y(x), where y(0) = 0,
y(1) = 1, is given by

T =
1√
2g

∫ 1

0

(
1 + y′(x)2

y(x)

)1/2

dx,

and the problem is a technical exercise in estimating the value of this integral for
various paths, y = y(t).

For (c) you may use that∫ π/2

0

dθ

(sin θ)1/2
=

1

2
π3/2

√
2

Γ(3/4)2
≈ 2.622.

Point (e) seems to be tricky, so try the not-so-obvious inequality

sin θ ≥ θ − θ2/π, 0 ≤ θ ≤ π/2.

Maybe you see a simpler way!

Solution: The transit time from (0, 0) to (1, 1) along a path y(x), where y(0) = 0,
y(1) = 1, is given by

T =
1√
2g

∫ 1

0

(
1 + y′(x)2

y(x)

)1/2

dx.

a) For the straight line path y = x, we thus obtain

Tsl =
1√
2g

∫ 1

0

(
1 + 1

x

)1/2

dx =
2
√
g
.

b) and c) For a circular quarter-arc,

x = 1− cos θ, y = sin θ,
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we obtain

Tca =

∫ (1,1)

(0,0)

ds

v(s)
=

∫ (1,1)

(0,0)

√
dx2 + dy2√

2gy

=
1√
2g

∫ π/2

0

dθ√
sin θ

=
1√
2g

(
1

2
π3/2

√
2

Γ(3/4)2

)
≈ 2
√
g

0.927.

(The integral came out from Maple, and is only checked versus a direct numerical
integration. It is a special case of an elliptic integral.)

d) The inequality
sin θ < θ

holds for all θ ∈ (0, π/2), and then

1√
2g

∫ π/2

0

dθ√
θ
<

1√
2g

∫ π/2

0

dθ√
sin θ

= Tca.

Now,
∫ π/2
0 θ−1/2 dθ =

√
2π, and we obtain

1√
2g

√
2π ≈ 2

√
g
· 0.886 < Tca.

e) One way to attack an opposite inequality would be to find a function h(θ), h(θ) ≤
sin θ, such that

Tca =
1√
2g

∫ π/2

0

dθ√
sin θ

≤ 1√
2g

∫ π/2

0

dθ√
h(θ)

≤ 2
√
g
.

A first try is the well-known

sin θ ≥ 2

π
θ.

But,
1√
2g

∫ π/2

0

dθ√
2θ/π

=
1√
2g
π =

2
√
g

π

2
√

2
≈ 2
√
g
· 1.11,

so this is too crude.
Another idea could be to introduce the substitution u = sin θ:∫ π/2

0

dθ√
sin θ

=

∫ 1

0

1√
u

1√
1− u2

du,

This does not seem much simpler, since (1− u2)−1/2 goes from 1 to ∞ when u
increases from 0 to 1.
The next try is the more accurate inequality (prove it!)

sin θ ≥ θ − θ3

6
, 0 ≤ θ ≤ π/2,

and this will in fact work, but the integral∫ π/2

0

dθ√
θ − θ3/6

.
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is not elementary.
It would be easier if the power of θ is 2 instead of 3, so we consider still another
inequality,

sin θ ≥ θ − θ2

π
, 0 ≤ θ ≤ π/2

(Prove this by taking the derivative of each side.) This one works, and the
integral can be computed analytically:

1√
2g

∫ π/2

0

dθ√
θ − θ2/π

=
1√
2g

1

2
π3/2 ≈ 2

√
g
· 0.984.

There are probably simpler ways to see this!

2 Troutman, Problem 2.5 (a), (c), (e).

Hints: In some of these and following problems you’ll need to put d/dε inside the
integral sign,

d

dε

∫ b

a
h(x, ε) dx =

∫ b

a

∂h(x, ε)

∂ε
dx. (1)

Theorem A.13 in Troutman is a simple sufficient condition for this to be allowed:
Assume that [a, b] is finite and h as well as ∂h/∂ε are continuous on [a, b] × [α, β].
Then (1) holds for all ε ∈ [α, β].

All problems are most easily solved by applying the formula

δJ(y; v) =
∂

∂ε
J(y + εv)

∣∣∣∣
ε=0

.

Solution:

a)

δJ(y; v) =
∂

∂ε

(
y(a) + εv(a)

)3∣∣∣∣
ε=0

= 3v(a)
(
y(a) + εv(a)

)2∣∣∣
ε=0

= 3y(a)2v(a)

c) We assume that [a, b] is a finite interval, and we compute the derivative of the
integrand,

∂

∂ε

√
2 + x2 − sin

(
y′(x) + εv′(x)

)
=

− cos
(
y′(x) + εv′(x)

)
2
√

2 + x2 − sin
(
y′(x) + εv′(x)

)v′(x).

This will always be a continuous, and hence bounded, function since∣∣∣∣∣∣ − cos
(
y′(x) + εv′(x)

)
2
√

2 + x2 − sin
(
y′(x) + εv′(x)

)v′(x)

∣∣∣∣∣∣ ≤ 1
2 |v
′(x)| ∈ C(a, b).

We may therefore apply the note about differentiation and find immediately

δJ(y; v) =

∫ b

a

− cos
(
y′(x)

)
2
√

2 + x2 − sin
(
y′(x)

)v′(x) dx
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e) A similar argument as in c) also applies here

δJ(y; v) =
∂

∂ε

∫ b

a

(
x2
(
y(x) + εv(x)

)2
+ ey

′(x)+εv′(x)
)

dx

∣∣∣∣
ε=0

=

∫ b

a

∂

∂ε

(
x2
(
y(x) + εv(x)

)2
+ ey

′(x)+εv′(x)
)∣∣∣∣
ε=0

dx

=

∫ b

a

(
2x2y(x)v(x) + ey

′(x)v′(x)
)

dx.

3 Troutman, Problem 2.10 (a).

Hint : Use that J(y + εv)− J(y) = εδJ(y; v) + o(ε).

Solution: We recognize the well-known differentiation rules also for the Gateaux
derivative. In all proofs of this sort, the trick is to start from the definition. Since
we know that

lim
ε→0

J(y + εv)− J(y)

ε
= δJ(y; v),

we also must have J(y+ εv)−J(y) = εδJ(y; v) + o(ε). This is exactly what we need:

δ(JJ̃)(y; v) = lim
ε→0

J(y + εv)J̃(y + εv)− J(y)J̃(y)

ε

= lim
ε→0

(
J(y) + εδJ(y; v) + o(ε)

)(
J̃(y) + εδJ̃(y; v) + o(ε)

)
− J(y)J̃(y)

ε

= δJ(y; v)J̃(y) + J(y)δJ̃(y; v) + lim
ε→0

o(ε)

ε

= δJ(y; v)J̃(y) + J(y)δJ̃(y; v).

With this as an example, points b) and c) in the same problem are easy.

4 Troutman, Problem 2.12.

Hint : Consider also the convexity of this functional.
Solution:

a) Assume that y0 is a solution and consider

F (y0 + v)− F (y0) =

∫ b

0

(
ρ(y0 + v)2 + β(y0 + v)− ρy20 − βy0

)
dx

=

∫ b

0

(
(2ρy0 + β)v + ρv2

)
dx.

We see that y0 is a minimum if

2ρy0 + β = 0,

that is,

y0(x) = − β(x)

2ρ(x)
.
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b) This function is feasible since ρ, β ∈ C1[a, b] and a unique minimum, since
ρ(x) > 0, and ∫ b

0
ρv2 dx = 0

if and only if v(x) = 0 for all x ∈ [a, b].

c) If ρ < 0, then F is strictly concave and y0 is a global maximum.

5 Troutman, Problem 3.6.

Solution: The integrand f(x, y, z) = z2/x is strongly convex for x ∈ [1, 2] since

f(x, y + v, z + w)− f(x, y, z) =
∂f

∂z
w +

w2

x
≥ ∂f

∂z
w,

and equality occurs only for w = 0. Thus, F is strictly convex for the standard case
with two fixed end points. The Euler–Lagrange equation is

d

dx
fy′ − fy = 2

d

dx

(
y′

x

)
= 0.

With x ∈ [1, 2], this immediately gives

y′

x
= A,

and
y(x) =

A

2
x2 +B.

a) For fixed endpoints, y(1) = 0, y(2) = 3 and the solution becomes

y(x) = x2 − 1.

b) Here y(2) = 3, whereas y(1) is free, and we need the natural boundary condition

fy′
(
1, y(1), y′(1)

)
=

2y′(1)

1
= 0.

Since y′(1) = 0, y(x) = 0x2 +B, and hence

y(x) = 3.

Both solutions in a) and b) are unique.

c) When both endpoints are free, y′(1) = y′(2) = 0 is necessary to ensure that
δF (y; v) = 0. Interestingly enough, any function

y(x) = B

will now be a solution. Thus, when both endpoints are free, partial strong con-
vexity for f is not sufficient for F to be strictly convex on the set of feasible
functions since this set may become too big.
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6 Troutman, Problem 3.7.

Solution: For fixed x
f(x, y, z) = 2exy + z2

is the sum of a linear (in y) and a partially strongly convex function. This implies that
F is strictly convex, at least for situation D and D1. The Euler–Lagrange equation
is

d

dx
fy′ − fy =

d

dx
(2y′)− 2ex = 0,

or
y′′ = ex.

The general solution is
y(x) = ex +Ax+B.

a) Here y(0) = 0 and y(1) = 1, and the (unique) solution becomes

y(x) = ex − 1 + (2− e)x.

b) Since y(1) is free, we impose the natural condition 2y′(1) = 0, and with y(0) = 0,
the solution is

y(x) = ex − ex− 1.

c) (This point is not included in the problem but in the solution at the end of the
book.) If we consider this problem with both endpoints free, we need y′(0) =
y′(1) = 0. However, this can not be achieved for any set of constants in the
general solution of the Euler–Lagrange equation, and no solution exists.

7 Troutman, Problem 3.28.

Hint : Verify that the given solution satisfies the Euler equation and the constraints.

Solution: The function f(y, z) =
√

1 + z2 is strongly convex, and so is also
√

1 + z2+
λy since the last term is linear. Thus, F + λG will be strictly convex (for fixed end-
points) and any unique solution of the Euler–Lagrange equation a global minimum.
The equation δF + λδG = 0 leads to

d

dx

(
y′√

1 + (y′)2

)
− λ = 0,

that is,
y′√

1 + (y′)2
− λx = c.

Now, using solution in the text

y′0 = − x− 1√
2− (x− 1)2

,

and since x ∈ [0, 1], √
1 + (y′0)

2 =

√
2

2− (x− 1)2
.
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This gives us
y′0√

1 + (y′0)
2

=
1− x√

2
.

Thus, y0 satisfies the Euler–Lagrange equation if λ = −c = −1/
√

2. We also need to
check the constraint, which is left for the reader!

8 Troutman, Problem 3.29.

Hint : The solution is a surprise!

Solution: Theorem 3.16 is about convex functionals. When considering

f(x, y, y′) + λg(y) = (y′)2 + λy2

it is therefore necessary to have λ ≥ 0. However, the minimum for∫ π

0

(
y′(x)2 + λy(x)2

)
dx

when y(0) = y(π) = 0 and λ ≥ 0 is clearly obtained for y ≡ 0, such that the only
solution Theorem 3.16 can provide is the trivial one:

min

∫ π

0
y′(x)2 dx

when ∫ π

0
y(x)2 dx = G(y0) = 0.

There is no λ ≥ 0 to use in Theorem 3.16! (The actual solution of this problem is a
challenge.)
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