Tutorial: Thursday 25 16:15-17:00 in El 1 (NB! Change of room).

1 Troutman, Problem 1.2.
Hints: The transit time from $(0,0)$ to $(1,1)$ along a path $y(x)$, where $y(0)=0$, $y(1)=1$, is given by

$$
T=\frac{1}{\sqrt{2 g}} \int_{0}^{1}\left(\frac{1+y^{\prime}(x)^{2}}{y(x)}\right)^{1 / 2} \mathrm{~d} x
$$

and the problem is a technical exercise in estimating the value of this integral for various paths, $y=y(t)$.

For (c) you may use that

$$
\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{(\sin \theta)^{1 / 2}}=\frac{1}{2} \pi^{3 / 2} \frac{\sqrt{2}}{\Gamma(3 / 4)^{2}} \approx 2.622 .
$$

Point (e) seems to be tricky, so try the not-so-obvious inequality

$$
\sin \theta \geq \theta-\theta^{2} / \pi, \quad 0 \leq \theta \leq \pi / 2 .
$$

Maybe you see a simpler way!

Solution: The transit time from $(0,0)$ to $(1,1)$ along a path $y(x)$, where $y(0)=0$, $y(1)=1$, is given by

$$
T=\frac{1}{\sqrt{2 g}} \int_{0}^{1}\left(\frac{1+y^{\prime}(x)^{2}}{y(x)}\right)^{1 / 2} \mathrm{~d} x .
$$

a) For the straight line path $y=x$, we thus obtain

$$
T_{s l}=\frac{1}{\sqrt{2 g}} \int_{0}^{1}\left(\frac{1+1}{x}\right)^{1 / 2} \mathrm{~d} x=\frac{2}{\sqrt{g}} .
$$

b) and c) For a circular quarter-arc,

$$
x=1-\cos \theta, \quad y=\sin \theta,
$$

we obtain

$$
\begin{aligned}
T_{c a} & =\int_{(0,0)}^{(1,1)} \frac{\mathrm{d} s}{v(s)}=\int_{(0,0)}^{(1,1)} \frac{\sqrt{\mathrm{d} x^{2}+\mathrm{d} y^{2}}}{\sqrt{2 g y}} \\
& =\frac{1}{\sqrt{2 g}} \int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{\sin \theta}} \\
& =\frac{1}{\sqrt{2 g}}\left(\frac{1}{2} \pi^{3 / 2} \frac{\sqrt{2}}{\Gamma(3 / 4)^{2}}\right) \approx \frac{2}{\sqrt{g}} 0.927 .
\end{aligned}
$$

(The integral came out from Maple, and is only checked versus a direct numerical integration. It is a special case of an elliptic integral.)
d) The inequality

$$
\sin \theta<\theta
$$

holds for all $\theta \in(0, \pi / 2)$, and then

$$
\frac{1}{\sqrt{2 g}} \int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{\theta}}<\frac{1}{\sqrt{2 g}} \int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{\sin \theta}}=T_{c a}
$$

Now, $\int_{0}^{\pi / 2} \theta^{-1 / 2} \mathrm{~d} \theta=\sqrt{2 \pi}$, and we obtain

$$
\frac{1}{\sqrt{2 g}} \sqrt{2 \pi} \approx \frac{2}{\sqrt{g}} \cdot 0.886<T_{c a}
$$

e) One way to attack an opposite inequality would be to find a function $h(\theta), h(\theta) \leq$ $\sin \theta$, such that

$$
T_{c a}=\frac{1}{\sqrt{2 g}} \int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{\sin \theta}} \leq \frac{1}{\sqrt{2 g}} \int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{h(\theta)}} \leq \frac{2}{\sqrt{g}} .
$$

A first try is the well-known

$$
\sin \theta \geq \frac{2}{\pi} \theta .
$$

But,

$$
\frac{1}{\sqrt{2 g}} \int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{2 \theta / \pi}}=\frac{1}{\sqrt{2 g}} \pi=\frac{2}{\sqrt{g}} \frac{\pi}{2 \sqrt{2}} \approx \frac{2}{\sqrt{g}} \cdot 1.11,
$$

so this is too crude.
Another idea could be to introduce the substitution $u=\sin \theta$:

$$
\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{\sin \theta}}=\int_{0}^{1} \frac{1}{\sqrt{u}} \frac{1}{\sqrt{1-u^{2}}} \mathrm{~d} u
$$

This does not seem much simpler, since $\left(1-u^{2}\right)^{-1 / 2}$ goes from 1 to ∞ when u increases from 0 to 1.
The next try is the more accurate inequality (prove it!)

$$
\sin \theta \geq \theta-\frac{\theta^{3}}{6}, \quad 0 \leq \theta \leq \pi / 2
$$

and this will in fact work, but the integral

$$
\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{\theta-\theta^{3} / 6}}
$$

is not elementary.
It would be easier if the power of θ is 2 instead of 3 , so we consider still another inequality,

$$
\sin \theta \geq \theta-\frac{\theta^{2}}{\pi}, \quad 0 \leq \theta \leq \pi / 2
$$

(Prove this by taking the derivative of each side.) This one works, and the integral can be computed analytically:

$$
\frac{1}{\sqrt{2 g}} \int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{\theta-\theta^{2} / \pi}}=\frac{1}{\sqrt{2 g}} \frac{1}{2} \pi^{3 / 2} \approx \frac{2}{\sqrt{g}} \cdot 0.984
$$

There are probably simpler ways to see this!

2 Troutman, Problem 2.5 (a), (c), (e).
Hints: In some of these and following problems you'll need to put $\mathrm{d} / \mathrm{d} \varepsilon$ inside the integral sign,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \int_{a}^{b} h(x, \varepsilon) \mathrm{d} x=\int_{a}^{b} \frac{\partial h(x, \varepsilon)}{\partial \varepsilon} \mathrm{d} x \tag{1}
\end{equation*}
$$

Theorem A. 13 in Troutman is a simple sufficient condition for this to be allowed: Assume that $[a, b]$ is finite and h as well as $\partial h / \partial \varepsilon$ are continuous on $[a, b] \times[\alpha, \beta]$. Then (1) holds for all $\varepsilon \in[\alpha, \beta]$.
All problems are most easily solved by applying the formula

$$
\delta J(y ; v)=\left.\frac{\partial}{\partial \varepsilon} J(y+\varepsilon v)\right|_{\varepsilon=0}
$$

Solution:

a)

$$
\begin{aligned}
\delta J(y ; v) & =\left.\frac{\partial}{\partial \varepsilon}(y(a)+\varepsilon v(a))^{3}\right|_{\varepsilon=0} \\
& =\left.3 v(a)(y(a)+\varepsilon v(a))^{2}\right|_{\varepsilon=0} \\
& =3 y(a)^{2} v(a)
\end{aligned}
$$

c) We assume that $[a, b]$ is a finite interval, and we compute the derivative of the integrand,

$$
\frac{\partial}{\partial \varepsilon} \sqrt{2+x^{2}-\sin \left(y^{\prime}(x)+\varepsilon v^{\prime}(x)\right)}=\frac{-\cos \left(y^{\prime}(x)+\varepsilon v^{\prime}(x)\right)}{2 \sqrt{2+x^{2}-\sin \left(y^{\prime}(x)+\varepsilon v^{\prime}(x)\right)}} v^{\prime}(x)
$$

This will always be a continuous, and hence bounded, function since

$$
\left|\frac{-\cos \left(y^{\prime}(x)+\varepsilon v^{\prime}(x)\right)}{2 \sqrt{2+x^{2}-\sin \left(y^{\prime}(x)+\varepsilon v^{\prime}(x)\right)}} v^{\prime}(x)\right| \leq \frac{1}{2}\left|v^{\prime}(x)\right| \in C(a, b)
$$

We may therefore apply the note about differentiation and find immediately

$$
\delta J(y ; v)=\int_{a}^{b} \frac{-\cos \left(y^{\prime}(x)\right)}{2 \sqrt{2+x^{2}-\sin \left(y^{\prime}(x)\right)}} v^{\prime}(x) \mathrm{d} x
$$

e) A similar argument as in c) also applies here

$$
\begin{aligned}
\delta J(y ; v) & =\left.\frac{\partial}{\partial \varepsilon} \int_{a}^{b}\left(x^{2}(y(x)+\varepsilon v(x))^{2}+\mathrm{e}^{y^{\prime}(x)+\varepsilon v^{\prime}(x)}\right) \mathrm{d} x\right|_{\varepsilon=0} \\
& =\left.\int_{a}^{b} \frac{\partial}{\partial \varepsilon}\left(x^{2}(y(x)+\varepsilon v(x))^{2}+\mathrm{e}^{y^{\prime}(x)+\varepsilon v^{\prime}(x)}\right)\right|_{\varepsilon=0} \mathrm{~d} x \\
& =\int_{a}^{b}\left(2 x^{2} y(x) v(x)+\mathrm{e}^{y^{\prime}(x)} v^{\prime}(x)\right) \mathrm{d} x .
\end{aligned}
$$

3 Troutman, Problem 2.10 (a).
Hint: Use that $J(y+\varepsilon v)-J(y)=\varepsilon \delta J(y ; v)+o(\varepsilon)$.

Solution: We recognize the well-known differentiation rules also for the Gateaux derivative. In all proofs of this sort, the trick is to start from the definition. Since we know that

$$
\lim _{\varepsilon \rightarrow 0} \frac{J(y+\varepsilon v)-J(y)}{\varepsilon}=\delta J(y ; v)
$$

we also must have $J(y+\varepsilon v)-J(y)=\varepsilon \delta J(y ; v)+o(\varepsilon)$. This is exactly what we need:

$$
\begin{aligned}
\delta(J \tilde{J})(y ; v) & =\lim _{\varepsilon \rightarrow 0} \frac{J(y+\varepsilon v) \tilde{J}(y+\varepsilon v)-J(y) \tilde{J}(y)}{\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} \frac{(J(y)+\varepsilon \delta J(y ; v)+o(\varepsilon))(\tilde{J}(y)+\varepsilon \delta \tilde{J}(y ; v)+o(\varepsilon))-J(y) \tilde{J}(y)}{\varepsilon} \\
& =\delta J(y ; v) \tilde{J}(y)+J(y) \delta \tilde{J}(y ; v)+\lim _{\varepsilon \rightarrow 0} \frac{o(\varepsilon)}{\varepsilon} \\
& =\delta J(y ; v) \tilde{J}(y)+J(y) \delta \tilde{J}(y ; v) .
\end{aligned}
$$

With this as an example, points b) and c) in the same problem are easy.

4 Troutman, Problem 2.12.
Hint: Consider also the convexity of this functional.

Solution:

a) Assume that y_{0} is a solution and consider

$$
\begin{aligned}
F\left(y_{0}+v\right)-F\left(y_{0}\right) & =\int_{0}^{b}\left(\rho\left(y_{0}+v\right)^{2}+\beta\left(y_{0}+v\right)-\rho y_{0}^{2}-\beta y_{0}\right) \mathrm{d} x \\
& =\int_{0}^{b}\left(\left(2 \rho y_{0}+\beta\right) v+\rho v^{2}\right) \mathrm{d} x
\end{aligned}
$$

We see that y_{0} is a minimum if

$$
2 \rho y_{0}+\beta=0,
$$

that is,

$$
y_{0}(x)=-\frac{\beta(x)}{2 \rho(x)}
$$

b) This function is feasible since $\rho, \beta \in C^{1}[a, b]$ and a unique minimum, since $\rho(x)>0$, and

$$
\int_{0}^{b} \rho v^{2} \mathrm{~d} x=0
$$

if and only if $v(x)=0$ for all $x \in[a, b]$.
c) If $\rho<0$, then F is strictly concave and y_{0} is a global maximum.

5 Troutman, Problem 3.6.

Solution: The integrand $f(x, y, z)=z^{2} / x$ is strongly convex for $x \in[1,2]$ since

$$
f(x, y+v, z+w)-f(x, y, z)=\frac{\partial f}{\partial z} w+\frac{w^{2}}{x} \geq \frac{\partial f}{\partial z} w
$$

and equality occurs only for $w=0$. Thus, F is strictly convex for the standard case with two fixed end points. The Euler-Lagrange equation is

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f_{y^{\prime}}-f_{y}=2 \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y^{\prime}}{x}\right)=0
$$

With $x \in[1,2]$, this immediately gives

$$
\frac{y^{\prime}}{x}=A
$$

and

$$
y(x)=\frac{A}{2} x^{2}+B
$$

a) For fixed endpoints, $y(1)=0, y(2)=3$ and the solution becomes

$$
y(x)=x^{2}-1
$$

b) Here $y(2)=3$, whereas $y(1)$ is free, and we need the natural boundary condition

$$
f_{y^{\prime}}\left(1, y(1), y^{\prime}(1)\right)=\frac{2 y^{\prime}(1)}{1}=0
$$

Since $y^{\prime}(1)=0, y(x)=0 x^{2}+B$, and hence

$$
y(x)=3
$$

Both solutions in a) and b) are unique.
c) When both endpoints are free, $y^{\prime}(1)=y^{\prime}(2)=0$ is necessary to ensure that $\delta F(y ; v)=0$. Interestingly enough, any function

$$
y(x)=B
$$

will now be a solution. Thus, when both endpoints are free, partial strong convexity for f is not sufficient for F to be strictly convex on the set of feasible functions since this set may become too big.

6 Troutman, Problem 3.7.

Solution: For fixed x

$$
f(x, y, z)=2 \mathrm{e}^{x} y+z^{2}
$$

is the sum of a linear (in y) and a partially strongly convex function. This implies that F is strictly convex, at least for situation \mathcal{D} and \mathcal{D}_{1}. The Euler-Lagrange equation is

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f_{y^{\prime}}-f_{y}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(2 y^{\prime}\right)-2 \mathrm{e}^{x}=0
$$

or

$$
y^{\prime \prime}=\mathrm{e}^{x}
$$

The general solution is

$$
y(x)=\mathrm{e}^{x}+A x+B
$$

a) Here $y(0)=0$ and $y(1)=1$, and the (unique) solution becomes

$$
y(x)=\mathrm{e}^{x}-1+(2-\mathrm{e}) x .
$$

b) Since $y(1)$ is free, we impose the natural condition $2 y^{\prime}(1)=0$, and with $y(0)=0$, the solution is

$$
y(x)=\mathrm{e}^{x}-\mathrm{e} x-1
$$

c) (This point is not included in the problem but in the solution at the end of the book.) If we consider this problem with both endpoints free, we need $y^{\prime}(0)=$ $y^{\prime}(1)=0$. However, this can not be achieved for any set of constants in the general solution of the Euler-Lagrange equation, and no solution exists.

7 Troutman, Problem 3.28.
Hint: Verify that the given solution satisfies the Euler equation and the constraints.
Solution: The function $f(y, z)=\sqrt{1+z^{2}}$ is strongly convex, and so is also $\sqrt{1+z^{2}}+$ λy since the last term is linear. Thus, $F+\lambda G$ will be strictly convex (for fixed endpoints) and any unique solution of the Euler-Lagrange equation a global minimum. The equation $\delta F+\lambda \delta G=0$ leads to

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y^{\prime}}{\sqrt{1+\left(y^{\prime}\right)^{2}}}\right)-\lambda=0
$$

that is,

$$
\frac{y^{\prime}}{\sqrt{1+\left(y^{\prime}\right)^{2}}}-\lambda x=c .
$$

Now, using solution in the text

$$
y_{0}^{\prime}=-\frac{x-1}{\sqrt{2-(x-1)^{2}}}
$$

and since $x \in[0,1]$,

$$
\sqrt{1+\left(y_{0}^{\prime}\right)^{2}}=\sqrt{\frac{2}{2-(x-1)^{2}}}
$$

This gives us

$$
\frac{y_{0}^{\prime}}{\sqrt{1+\left(y_{0}^{\prime}\right)^{2}}}=\frac{1-x}{\sqrt{2}} .
$$

Thus, y_{0} satisfies the Euler-Lagrange equation if $\lambda=-c=-1 / \sqrt{2}$. We also need to check the constraint, which is left for the reader!

8 Troutman, Problem 3.29.
Hint: The solution is a surprise!

Solution: Theorem 3.16 is about convex functionals. When considering

$$
f\left(x, y, y^{\prime}\right)+\lambda g(y)=\left(y^{\prime}\right)^{2}+\lambda y^{2}
$$

it is therefore necessary to have $\lambda \geq 0$. However, the minimum for

$$
\int_{0}^{\pi}\left(y^{\prime}(x)^{2}+\lambda y(x)^{2}\right) \mathrm{d} x
$$

when $y(0)=y(\pi)=0$ and $\lambda \geq 0$ is clearly obtained for $y \equiv 0$, such that the only solution Theorem 3.16 can provide is the trivial one:

$$
\min \int_{0}^{\pi} y^{\prime}(x)^{2} \mathrm{~d} x
$$

when

$$
\int_{0}^{\pi} y(x)^{2} \mathrm{~d} x=G\left(y_{0}\right)=0
$$

There is no $\lambda \geq 0$ to use in Theorem 3.16! (The actual solution of this problem is a challenge.)

