TMA4180 Optimization
Theory
Spring 2013

Norwegian University of Science

and Technology Exercise set 10
Department of Mathematical

Sciences

Tutorial: Thursday 25 16:15-17:00 in El 1 (NB! Change of room).

Troutman, Problem 1.2.

Hints: The transit time from (0,0) to (1,1) along a path y(x), where y(0) = 0,
y(1) =1, is given by

1 L4y (x)? 1/2
T = dz,
V29 Jo y(x)
and the problem is a technical exercise in estimating the value of this integral for
various paths, y = y(t).

For (c¢) you may use that

/2
/ i = Lo V2 2.622.
o (sin@)t/2 2 I'(3/4)2

Point (e) seems to be tricky, so try the not-so-obvious inequality
sinf > 0 — 02/7r, 0<6<m/2

Maybe you see a simpler way!
Solution:  The transit time from (0,0) to (1,1) along a path y(z), where y(0) = 0,
y(1) =1, is given by

1 1 /q —|—y'(m)2 1/2
T= dx.
V29 Jo y(x)

a) For the straight line path y = x, we thus obtain

1 1/2
Tslzil / (1+1> da::—2 )
V29 Jo x NG

b) and c) For a circular quarter-arc,

xr=1—cosf, y=sinb,
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d)

we obtain

Tm_/<1 D ds :/(1 D \/dz? 4 dy?
) (00) V2gy

\/7 / SlIl

L (L V2O 2
()« 2

(The integral came out from Maple, and is only checked versus a direct numerical
integration. It is a special case of an elliptic integral.)

The inequality
sinf < 0

holds for all 6 € (0,7/2), and then

/”/2 do 1 o9 -
\/7 0 Vsin 6 “
Now, fOW/Q 0-1/2d0 = \/2r, and we obtain

—\/ — - 0.886 < Teq.
V29 \/§

One way to attack an opposite inequality would be to find a function h(0), h(0) <
sinf, such that

B / 1 (7?49 _ 2
Toa = V29 v/sin 6 \/@ 0 Vh(O) \/57

A first try is the well-known

2
sinf > —4.
T

But,

1 2 2
=—7n7=——=~—-1.11,
V29 / 29/71' V29 VIV2 g
so this is too crude.

Another idea could be to introduce the substitution v = sin0:

/2
/0 V/sin 0 \f u+/1— u2

This does not seem much simpler, since (1 — u®)~/2

increases from 0 to 1.

goes from 1 to co when u
The next try is the more accurate inequality (prove it!)
3

siDGZG—%, 0<6<m7/2,

and this will in fact work, but the integral

m de
/0 VO —63/6
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s not elementary.
It would be easier if the power of 6 is 2 instead of 3, so we consider still another

inequality,
02
sinf>0——, 0<60<m/2
T

(Prove this by taking the derivative of each side.) This one works, and the
integral can be computed analytically:

1 [™? a6 L1 g 2
Vag o i-o2x V2" NG

There are probably simpler ways to see this!

Troutman, Problem 2.5 (a), (c), (e).
Hints: In some of these and following problems you’ll need to put d/de inside the

integral sign,
d b b Oh(z,¢)
l = — " da. 1
i /. h(z,e)dz /a 5 dx (1)

Theorem A.13 in Troutman is a simple sufficient condition for this to be allowed:
Assume that [a,b] is finite and h as well as Oh/Oe are continuous on [a,b] X [, f].
Then (1) holds for all € € [a, B].

All problems are most easily solved by applying the formula

0
0J(y;v) = —
J(y;v) = oIy +ev) .
Solution:
a)
0 3
0J(y;v) = 5-(y(a) +ev(a))
€ e=0
2
= 3v(a)(y(a) + ev(a)) L:o
= 3y(a)*v(a)
c) We assume that [a,b] is a finite interval, and we compute the derivative of the

integrand,

—cos(y'(z) + ev'(2))
2\/2+a:2 sin(y'(z) + ev'(z))

This will always be a continuous, and hence bounded, function since

—cos( "(z) + eV (x ))
2\/2+x2—s1n( '(z) + ev/(z))

We may therefore apply the note about differentiation and find immediately

b —cos(y'(z)) ,
0J(y;v) = v (z)dx
(i) /a 2\/2+x2—sin(y’(ac)) @

a{_:\/Q—I—:r?—sm( '(z) + ev'(z)) = V' ().

V()| < 5l (2)] € Cla,b).
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e) A similar argument as in c) also applies here

0

b
8J(y;v) = 65/ (wz (y(:v) + 6U(:L'))2 + ey’($)+6v’(x)) dz

= /b a (ff? (y(x) + ev())” + ey/(“)%“'(‘”))

e=0

dx
e=0

Oe

b
= [ eyt + e O (1) da.

Troutman, Problem 2.10 (a).
Hint: Use that J(y 4+ ev) — J(y) = edJ(y;v) + o(e).

Solution:  We recognize the well-known differentiation rules also for the Gateaux
derivative. In all proofs of this sort, the trick is to start from the definition. Since

we know that ; ;
i L+ ev) = J(y)

e—0 £

we also must have J(y+¢ev) — J(y) = €dJ(y;v) +o(e). This is exactly what we need:

= 0J(y;v),

J(y +ev)J(y + ev) — J(y)J (y)

§(JJ)(y;v) = lim

e—0 g
i ) +20J(y30) + 0(e)) (J(y) + e8] (y;v) +0(e)) — J(y)J (y)
e—0 g

= 07y 0)J (y) + T ()6 (y; v) + lim 0(55)

With this as an example, points b) and c) in the same problem are easy.

Troutman, Problem 2.12.

Hint: Consider also the convexity of this functional.
Solution:

a) Assume that yo is a solution and consider
b
F(yo +v) — F(yo) = /O (p(yo +v)* + B(yo + v) — pyg — Byo) da

b
= /0 ((2py0 + B)v + pv?) da.

We see that yg is a minimum if

2pyo + B =0,
that 1is,
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b) This function is feasible since p, € Clla,b] and a unique minimum, since

p(xz) >0, and
b
/ pv?de =0
0

if and only if v(x) = 0 for all x € [a,b].

c) If p <0, then F is strictly concave and yo is a global mazximum.

Troutman, Problem 3.6.
Solution: The integrand f(z,y, z) = 2%/ is strongly convex for x € [1,2] since

f(x7y+vaz+w)_f(x7yaz):7w+7 > W,

and equality occurs only for w = 0. Thus, F is strictly convex for the standard case
with two fived end points. The Euler—Lagrange equation is

d d [y
v i=2g(5) =0

With x € [1,2], this immediately gives
/

v_y
i

and

A
y(x) = 51‘2 + B.

a) For fized endpoints, y(1) =0, y(2) = 3 and the solution becomes
y(z) =22 — 1.
b) Here y(2) = 3, whereas y(1) is free, and we need the natural boundary condition

2y'(1)
1

=0.

fy (Ly(1),y/ (1)) =
Since y' (1) = 0, y(z) = 02® + B, and hence
y(z) = 3.

Both solutions in a) and b) are unique.

c) When both endpoints are free, y'(1) = 3'(2) = 0 is necessary to ensure that
0F (y;v) = 0. Interestingly enough, any function

y(z) =B

will now be a solution. Thus, when both endpoints are free, partial strong con-
vexity for f is not sufficient for F to be strictly conver on the set of feasible
functions since this set may become too big.
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[6]

Troutman, Problem 3.7.

Solution: For fived x
fl@,y,2) = 2"y + 2°

is the sum of a linear (iny) and a partially strongly convez function. This implies that
F s strictly convex, at least for situation D and Dy. The Euler—Lagrange equation
18

d d
—f— f, = —(2¢) — 2e* =

or

The general solution is
y(x) =e" 4+ Az + B.

a) Here y(0) =0 and y(1) = 1, and the (unique) solution becomes
y(x) =e"— 14+ (2 —e)x.

b) Since y(1) is free, we impose the natural condition 2y’ (1) = 0, and with y(0) = 0,
the solution is
y(z) =e* —ex — 1.

c) (This point is not included in the problem but in the solution at the end of the
book.) If we consider this problem with both endpoints free, we need y'(0) =
y'(1) = 0. Howewver, this can not be achieved for any set of constants in the
general solution of the Fuler—Lagrange equation, and no solution ewists.

Troutman, Problem 3.28.

Hint: Verify that the given solution satisfies the Euler equation and the constraints.

Solution: The function f(y,z) = V1 + 22 is strongly convex, and so is also /1 + 22+
Ay since the last term is linear. Thus, F + NG will be strictly convex (for fixed end-
points) and any unique solution of the Euler—Lagrange equation a global minimum.
The equation 6F + A0G = 0 leads to

d /
d(_ v \_,_,
dﬂf( 1+(y’)2>

/

¥y
1+ (v')?

Now, using solution in the text

that 1is,

— Az =c.

and since x € [0,1],

1+(yé)2:\/2($21)2~
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This gives us
A 1—x

Yo _
VI+ty)? o V2
Thus, yo satisfies the Euler—Lagrange equation if A = —c = —1/v/2. We also need to
check the constraint, which is left for the reader!

Troutman, Problem 3.29.

Hint: The solution is a surprise!

Solution: Theorem 8.16 is about convex functionals. When considering

flay,y) + Ag(y) = (V) + Ny

it is therefore necessary to have A > 0. However, the minimum for

j§”<y%x>2+-xy<x>2)dx

when y(0) = y(m) = 0 and X\ > 0 is clearly obtained for y = 0, such that the only
solution Theorem 3.16 can provide is the trivial one:

min/ y (x)* dx

0

when -
| @ e = G =0
0

There is no A > 0 to use in Theorem 3.16! (The actual solution of this problem is a
challenge.)
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