
Norwegian University of Science
and Technology
Department of Mathematical
Sciences

TMA4180 Optimization
Theory

Spring 2013

Exercise set “Project”

Instructions

• The deadline for the exercise is Monday April 22, at 16:00.

• You can work in groups of up to 2 students.

• The report should be short, not more than 5-6 pages in LaTeX (or equivalent).
Hand written reports are OK, but write readable. The report can be in English or
Norwegian.

• Do not include listings of your Matlab code. But describe your algorithms (or refer
to the relevant algorithm in the textbook).

• Write your student number(s) on the top of the report. Do not use your name.

• Send the report by email to Markus, or put it in my mailbox in the 7th floor, SBII.

• You are free to collaborate between groups, but do not copy from each other. If you
use information from books, internet, etc., always give citations.

• You are encouraged to play around with algorithms, parameters, initial values, sub-
algorithms, etc. Solve more test problems, and maybe more difficult problems. Use
different algorithms, and compare them. Innovative, relevant and correct work can
to some extent compensate for less work on other tasks.

• The project counts for 20% of the grade. If you do not do the project, you can still
take the exam, but the best grade you can achieve is a C.

Tutorials: These two weeks, the tutorials are moved to MA24 (in the basement of the
green building behind Realfagsbygget), from 16:15-18:00. Do you need more help, you are
free to contact us outside the tutorial hours, but please make an appointment first.

1 Introduction

In this project, you will develop some matlab code to calculate the inverse kinematics of
robots.

We will assume that we are dealing with a planar robot consisting only of a chain of n− 1
rigid segments of fixed length connected by revolute joints as seen in Figure 1. Furthermore,

April 11, 2013 Page 1 of 6



Exercise set “Project”

x2

(1)y2

x3y3

y4

x4

l3
θ2θ2

θ1

(2)

(3)

(4)

l2

l1

θ3

y1

x1

Figure 1: Notation for our planar multi-joint robot. The robot starts on the ground with
joint (1). The hand or tool, which is freely orientable, is located at joint (4). In every
joint but the last one, we have a local rectangular coordinate system oriented along the
next robot segment. The pair (x1, y1) denotes the coordinate axes of the usual cartesian
coordinate system in R2. The coordinate vector x2 points along the first robot segment
with y2 complementing it to an orthogonal coordinate system and so on. The origin of
every coordinate system (xi, yi) for i > 1, is located at the joint-position of joint i−1. Note
that in this case y1 and x2 coincide, as the robot’s first joint makes precisely a π/2 rotation
and the robot starts in the origin. The joint angles θi denote the angles between successive
robot segments, i.e., θi is the angle between xi and xi+1. The first angle θ1 is then the
angle between the x-axis in R2 and the first robot segment. Angles are measured counter-
clockwise. This means that in this figure, θ1 is positive, while θ2 and θ3 are negative.
Lengths of the segments are denoted by li.

we will assume that the first segment is fixed in the origin of R2 (on the ground) and that
the “hand” or “tool” is attached to the last joint and can freely rotate (so we only care
about the position of the last joint and not its orientation). The configuration space C of
the robot is then simply the set of possible hand positions: C ⊂ R2.

Planar revolute joints are parametrized by an angle θi as seen in Figure 1. The set of all
possible robot poses can then be parametrized by the vector space product of all joint-
rotations, which we will call the joint space J :

J = S1 × · · · × S1︸ ︷︷ ︸
n−1

,

where n denotes the number of joints and S1 is the torus [0, 2π).

The Forward Kinematic Problem is concerned with determining the positions of the robot’s
joints, in particular the last one, given a robot’s joint angles {θi}n−1i=1 ; i.e., we are interested

April 11, 2013 Page 2 of 6



Exercise set “Project”

in finding a function
F : J → C (1)

Under the given assumptions, F takes on a particularly simple form (see Appendix A for
a derivation):

F (θ) =

 ∑n−1
i=1 li cos

(∑i
j=1 θj

)
∑n−1

i=1 li sin
(∑i

j=1 θj

)  (2)

Note that the position of the k’th joint can be calculated by the same expression by simply
summing up only from i = 1 to k − 1.

2 First Task - Forward Kinematics

Convince yourself that Equation (2) is correct.

1 Implement a Matlab function that, for given lengths {li}n−1i=1 and joint angles {θi}n−1i=1 ,
calculates the robot’s n joint positions in global cartesian coordinates. Test the
function for the following cases:

1. l = (1, 1), θ = (
π

2
, 0)

2. l = (1, 1), θ = (
π

2
,
π

2
)

3. l = (1, 2, 2, 1), θ = (
π

2
,−π

2
,
π

2
,−π

2
)

Write a plotting function to visualize the robot for a given configuration!

2 Sketch the set C of all reachable positions with a 2-joint robot with joint lengths l1
and l2.

3 Second Task - Inverse Kinematics 1

We now turn to the inverse problem to the forward kinematics just considered: given a
target point t ∈ C, find a joint-configuration θ ∈ J such that F (θ) = t.

Note that this is an ill-posed problem: A solution is not necessarily unique, and does not
necessarily depend continuously on the position t. More generally we’re just given a point
t ∈ R2, so we don’t even know if a solution exists at all, so we will consider the more
general problem: Given t ∈ R2

min
θ∈J

d(θ) :=
1

2
‖t− F (θ)‖2R2 (3)

.

April 11, 2013 Page 3 of 6



Exercise set “Project”

For now we will assume that there are no constraints on the joint rotations.

3 Calculate the gradient of d in (3).

4 Implement a steepest descent method to solve Problem (3). Note that you will need
to use a line search method to determine the optimal step size, for example the
backtracking line search from Exercise 3. Use the following settings:

1. l = (1, 1), t = (0, 2), θ0 = (0, 0)

2. l = (1, 1), t = (0, 1), θ0 = (0, 0)

3. l = (1, 1), t = (0, 1), θ0 = (π, 0)

4. l = (2, 2, 1, 1, 1), t = (2, 4), θ0 = (0, 0, 0, 0, 0)

where θ0 is the starting point for the iteration. You can also use your own settings,
but have at least one test case with at least 5 joints.

Count the number of iterations it takes to converge to a reasonable solution (choose
suitable abort criteria).

Also find an example where the robot can’t reach the target position.

Hint: You will need to use small step sizes.

4 Third Task - Inverse Kinematics 2

5 Calculate the Hessian of d in (3). Note that the Hessian of F is a 3-dimensional
matrix!

6 Based on your code from task 4 and the expressions you derived in task 5, implement
now a Newton method solver for Problem (3). Use the same linesearch algorithm.

In the inverse kinematics problem, the Hessian will often be indefinite, i.e, we will
find many saddle points. (Why?) In order to still use the Newton method under
these circumstances, we will use a modified method as specified in algorithm 3.2
(“Line Search Newton with Modification”) in your textbook. Use algorithm 3.3,
(“Cholesky with Added Multiple of the Identity”) from your textbook to determine
the perturbation of the Hessian. You can use Matlab’s chol function.

We will make one more modification to the standard Newton method: Begin your op-
timization with 10 normal gradient descent (with backtracking) steps before using the
Newton method. Such an initialization procedure can prevent the Newton method
from too quickly convering to a local minimum close to the iteration’s starting point.

Use the same robot and target settings as in task 4.

Try using a larger step size compared to the gradient descent method. Compare the
number of iterations with the gradient descent method.

April 11, 2013 Page 4 of 6



Exercise set “Project”

5 Fourth Task - Constraints

7 Sketch the set C of all reachable positions with a 2-joint robot with joint lengths l1
and l2, where we restrict the joint angles θ1 and θ2 to lie within the interval [−π

2
,
π

2
].

8 Set up the KKT-conditions for

min
θ∈J

d(θ) :=
1

2
‖t− F (θ)‖2R2 (4)

αi ≤θi ≤ βi, i = 1, . . . , n− 1, (5)

for given bounds {αi}n−1i=1 and {βi}n−1i=1 .

Do the Lagrange multipliers have any special meaning in this setting?

9 Modify your algorithm from task 4 or 6, to enforce the following constraints on the
joint angles via a projection method as discussed in class (see also the lecture notes
no. 13 from the course webpage).

Use the following settings: l = (2, 2, 1, 1, 1), t = (2, 4), θ0 = (0, 0, 0, 0, 0). We will
always use the constraint 0 ≤ θ1 ≤ π. Compare four different cases:

1. −π
2
≤ θi ≤

π

2
, i ∈ 2, . . . , n− 1

2. −π
4
≤ θi ≤

π

4
, i ∈ 2, . . . , n− 1

3. − π

16
≤ θi ≤

π

16
, i ∈ 2, . . . , n− 1

10 (Optional) How would you modify Problem (4) to prevent the robot from “crashing
into the ground”, i.e., intersecting the x-axis? Use the matlab optimization toolbox
to develop an inverse kinematics function that solves this problem.

A Forward Kinematics

With the assumptions specified in the introduction, we can find a particularly simple
expression for F . We start by introducing a set of rectangular coordinate systems, starting
with the global cartesian system (x1, y1), with joint 1 located in the origin. For every joint
i we set up a local rectangular coordinate system (xi+1, yi+1) with the origin in joint i,
oriented such that the positive xi axis lies along the direction of the i’th robot segment.
We do not set up a coordinate system for the last joint. See Figure 1 for an example of
our notation.

The hand obviously has (xn, yn) coordinates (ln−1, 0), but we are interested in its (x1, y1)
coordinates.

April 11, 2013 Page 5 of 6



Exercise set “Project”

We can calculate this recursively. Given a point q in the plane with (xi, yi) and (xi−1, yi−1)
coordinates (ai, bi) and (ai−1, bi−1) respectively, we get

(
ai−1
bi−1

)
=

(
cos θi−1 − sin θi−1
sin θi−1 cos θi−1

)(
ai
bi

)
+

(
li−2
0

)
,

where θi−1 is the counterclockwise angle from the xi−1 axis to the xi axis. We define l0 = 0.

This can be written as ai−1
bi−1
1

 =

 cos θi−1 − sin θi−1 li−2
sin θi−1 cos θi−1 0

0 0 1


︸ ︷︷ ︸

Ai−1

 ai
bi
1



We then get for the hand position x1
y1
1

 =A1A2 . . . An−1

 xn
yn
1


=A1A2 . . . An−1

 ln−1
0
1



=


∑n−1

i=1 li cos
(∑i

j=1 θj

)
∑n−1

i=1 li sin
(∑i

j=1 θj

)
1


or simply:

F (θ) =

 ∑n−1
i=1 li cos

(∑i
j=1 θj

)
∑n−1

i=1 li sin
(∑i

j=1 θj

) 

April 11, 2013 Page 6 of 6


