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1 INTRODUCTION

During the lectures we need some basic topics and concepts from mathematical analysis. This
material is actually not so di¢cult, ñ if you happen to have seen it before. If this is the Örst time,
experience has shown that even if it looks simple and obvious, it is necessary to spend some time
digesting it.

Nevertheless, the note should be read somewhat relaxed. Not all details are included, nor are all
proofs written out in detail. After all, this is not a course in mathematical analysis.

Among the central topics are the Taylor Formula in n dimensions, the general optimization setting,
and above all, basic properties of convex sets and convex functions. A very short review about
matrix norms and Hilbert space has also been included. The big optimization theorem in Hilbert
space is the Projection Theorem. Its signiÖcance in modern technology and signal processing can
hardly be over-emphasized, although it is often disguised under other fancy names.

The Önal result in the note is the Implicit Function Theorem which ensures the existence of
solutions of implicit equations.

The abbreviation N&W refers to the textbook, J. Nocedal and S. Wright: Numerical Optimization,
Springer. Note that page numbers in the Örst and second editions are di§erent.

2 TERMINOLOGY AND BASICS

Vectors in Rn are, for simplicity, denoted by regular letters, x, y, z, ! ! ! , and kxk is used for their
length (norm),

kxk =
!
x21 + x

2
2 + ! ! !+ x

2
n

"1=2
: (1)

Occasionally, x1; x2; ! ! ! will also mean a sequence of vectors, but the meaning of the indices will
then be clear from the context.

We are considering functions f from Rn to R. Such a function will often be deÖned for all or
most of Rn, but we may only be considering f on a subset # # Rn. Since the deÖnition domain
of f typically extends #, it is in general not a problem to deÖne the derivatives of f , @f

@xi
, also

on the boundary of #. The gradient, rf , is a vector, and in mathematics (but not in N&W!) it
is considered to be a row vector,

rf =
#
@f

@x1
;
@f

@x2
; ! ! ! ;

@f

@xn

$
: (2)

We shall follow this convention and write rf (x) p for rf (x) ! p. There are, however, some
situations where the direction d, deÖned by the gradient is needed, and then d = rf 0. In the
lectures we use 0 for transposing vectors and matrices.

A set V # Rn is open if all points in V may be surrounded by a ball in Rn belonging to V : For
all x0 2 V , there is an r > 0 such that

fx ; kx' x0k < rg # V: (3)
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(This notation means îThe collection of all x-s such that kx' x0k < rî).

It is convenient also to say that a set V # # is open in # if there is an open set W # Rn such
that V = W \ # (The mathematical term for this is a relatively open set). Let # = [0; 1] # R.
The set [0; 1=2) is not open in R (why?). However, as a subset of #, [0; 1=2) # [0; 1], it is open in
#, since [0; 1=2) = ('1=2; 1=2) \ [0; 1] (Think about this for a while!).

A neighborhood N of a point x is simply an open set containing x.

2.1 Sup and Inf ñ Max and Min

Consider a set S of real numbers. The supremum of the set, denoted

supS; (4)

is the smallest number that is equal to or larger than all members of the set.

It is a very fundamental property of real numbers that the supremum always exists, although it
may be inÖnite. If there is a member x0 2 S such that

x0 = supS; (5)

then x0 is called a maximum and written

x0 = maxS: (6)

Sometimes such a maximum does not exists: Let

S =

%
1'

1

n
;n = 1; 2; ! ! !

&
: (7)

In this case, there is no maximum element in S. However, supS = 1, since no number less than
1 Öts the deÖnition. Nevertheless, 1 is not a maximum, since it is not a member of the set. This
is the rule:

A supremum always exists, but may be +1. If a maximum exists, it is equal to the supremum.

For example,

sup f1; 2; 3g = max f1; 2; 3g = 3;
sup fx; 0 < x < 3g = 3; (8)

sup f1; 2; 3; ! ! ! g =1:

The inÖmum of a set S, denoted
inf S; (9)

is the largest number that is smaller than or equal to all members in the set.

The minimum is deÖned accordingly, and the rule is the same.

We will only meet sup and inf in connection with real numbers, although this can be deÖned for
other mathematical structures as well. As noted above, the existence of supremum and inÖmum
is quite fundamental for real numbers!

A set S of real numbers is bounded above if supS is Önite (supS <1), and bounded below if inf S
is Önite ('1 < inf S). The set is bounded if both supS and inf S are Önite.
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2.2 Convergence of Sequences

A Cauchy sequence fxig1i=1 of real numbers is a sequence where

lim
n!1

#
sup
m$n

jxm ' xnj
$
= 0: (10)

This deÖnition is a bit tricky, but if you pick an " > 0, I can always Önd an n" such that

jxm ' xn" j < " (11)

for all xm where m > n".

Another very basic property of real numbers is that all Cauchy sequences converge, that is,

lim
n!1

xn = a (12)

for a (unique) real number a.

A sequence S = fxng1n=1 is monotonically increasing if

x1 , x2 , x3 , ! ! ! : (13)

A monotonically increasing sequence is always convergent,

lim
n!1

xn = supS; (14)

(it may diverge to +1). Thus, a monotonically increasing sequence that is bounded above, is
always convergent (You should try to prove this by applying the deÖnition of sup and the deÖnition
of a Cauchy sequence!).

Similar results also apply for monotonically decreasing sequences.

2.3 Compact Sets

A set S in Rn is bounded if
sup
x2S

kxk <1: (15)

A Cauchy sequence S = fxng1n=1 # R
n is a sequence such that

lim
n!1

#
sup
m$n

kxm ' xnk
$
= 0: (16)

It is easy to see, by noting that every component of the vectors is a sequence of real numbers,
that all Cauchy sequences in Rn converge.

A set C in Rn is closed if all Cauchy sequences that can be formed from elements in C converge to
elements in C. This may be a bit di¢cult to grasp: Can you see why the interval [0; 1] is closed,
while (0; 1) or (0; 1] are not? What about [0;1)? Thus, a set is closed if it already contains all
the limits of its Cauchy sequences. By adding these limits to an arbitrary set C, we close it, and
write 7C for the closure of C. For example,

(0; 1) = [0; 1] : (17)
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Consider a bounded sequence S = fxng1i=1 in R, and assume for simplicity that

0 = inf S , xn , supS = 1: (18)

Split the interval [0 ; 1] into half, say [0 ; 12) and [
1
2 ; 1]. Select one of these intervals containing

inÖnitely many elements from S; and pick one xn1 2 S from the same interval. Repeat the
operation by halving this interval and selecting another element xn2 . Continue the same way. On
step k, the interval Ik will have length 2&k and all later elements xnk , xnk+1 , xnk+2 ,! ! ! will be
members of Ik. This makes the sub-sequence fxnkg

1
k=1 # S into a Cauchy sequence (why?), and

hence it converges. A similar argument works for a sequence in Rn.

A closed set with the property that all bounded sequences have convergent subsequences, is called
compact (this is a mathematical term, not really related to the everyday meaning of the word).

By an easy adaptation of the argument above, we have now proved that all bounded and closed
sets in Rn are compact.

Of course, as long as the set above is bounded, fxnkg
1
k=1 will be convergent, but the limit may

not belong to the set, unless it is closed.

If you know the Hilbert space l2 (or see below) consisting of all inÖnite-dimensional vectors
x = f:1; :2; ! ! ! g such that kxk2 =

P1
i=1 j:ij

2 < 1, you will probably also know that the unit
ball, B = fx ; kxk , 1g is bounded (obvious) and closed (not so obvious). All unit vectors feig1i=1
in an orthogonal basis will belong to B. However, kei ' ejk2 = keik2+k'ejk2 = 2;whenever i 6= j.
We have no convergent subsequences in this case, and B is not compact! This rather surprising
example occurs because l2 has inÖnite dimension.

2.4 O() and o() statements

It is convenient to write that the size of f (x) is of the order of g (x) when x ! a in the short
form

f (x) = O (g (x)) ; x! a: (19)

Mathematically, this means that there exists two Önite numbers, m and M such that

mg (x) , f (x) ,Mg (x) (20)

when x! a. In practice, we often use the notation to mean

jf (x)j ,Mg (x) (21)

and assume that lower bound, not very much smaller than Mg (x) can be found. For example,

log (1 + x)' x = O
!
x2
"

when x! 0.

The other symbol, o (), is slightly more precise: We say that f (x) = o (g (x)) when x! a if

lim
x!a

f (x)

g (x)
= 0: (22)
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2.5 The Taylor Formula

You should all be familiar with the Taylor series of a function g of one variable,

g (t) = g (t0) + g
0 (t0) (t' t0) +

g00 (t0)

2!
(t' t0)2 +

g000 (t0)

3!
(t' t0)3 + ! ! ! : (23)

The Taylor Formula is not a series, but a quite useful Önite identity. In essence, the Taylor
Formula gives an expression for the error between the function and its Taylor series truncated
after a Önite number of terms.

We shall not dwell with the derivation of the formula, which follows by successive partial integra-
tions of the expression

g (t) = g (0) +

Z t

0
g0 (s) ds; (24)

and the Integral Mean Value Theorem,
Z t

0
f (s)' (s) ds = f (Et)

Z t

0
' (s) ds; ' 0 0; f continuous, E 2 (0; 1) :

The formulae below state for simplicity the results around t = 0, but any point is equally good.
The simplest and very useful form of Taylor Formula is also known as the Secant Formula:

If the derivative g0 exists for all values between 0 and t, there is a E 2 (0; 1) such that

g (t) = g (0) + g0 (Et) t : (25)

This is an identity. However, since we do not know the value of E, which in general depends on t,
we can not use it for computing g (t)! Nevertheless, the argument Et is at least somewhere in the
open interval between 0 and t.

If g0 is continuous at t = 0, we may write

g (t) = g (0) + g0 (Et) t

= g (0) + g0 (0) t+
)
g0 (Et)' g0 (0)

*
t (26)

= g (0) + g0 (0) t+ o (t) :

Moreover, if g00 exists between 0 and t, we have the second order formula,

g (t) = g (0) + g0 (0) t+ g00 (Et)
t2

2!
(27)

(Try to prove this using the Integral Mean Value Theorem and assuming that g00 is continuous!
Be sure to use s' t for the integral of ds).

Hence, if g00 is bounded,
g (t) = g (0) + g0 (0) t+O

!
t2
"

(28)

The general form of Taylor Formula, around 0 and with su¢ciently smooth functions, reads

g (t) =

NX

j=0

g(j) (0)

j!
tj +RN (t) ; (29)

RN (t) =

Z t

0

g(N+1) (s)

N !
(t' s)N ds =

g(N+1) (Et)

(N + 1)!
tN+1; E 2 (0; 1) : (30)
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2.6 The n-dimensional Taylor Formula

The n-dimensional Taylor formula will be quite important to us, and the derivation is based on
the one-dimensional formula above.

Let f : Rn ! R, and assume that rf exists around x = 0. Let us write g (s) = f (sx). Then

g0 (E) =

nX

i=1

@f

@xi
(Ex)

d (sxi)

ds
(E) =

nX

i=1

@f

@xi
(Ex)xi = rf (Ex)x; (31)

and we obtain

f (x) = g (1)

= g (0) + g0 (E) ! 1 (32)

= f (0) +rf (Ex)x; E 2 (0; 1) ;

which is the n-dimensional analogue of the Secant Formula. Note that the point Ex is somewhere
on the line segment between 0 and x, and that the same E applies to all components of x (but
again, E is an unknown function of x).

As above, if rf is continuous at x = 0,

f (x) = f (0) +rf (0)x+ (rf (Ex)'rf (0))x
= f (0) +rf (0)x+ o (kxk) : (33)

At this point we make an important digression. If a relation

f (x) = f (x0) +rf (x0) (x' x0) + o (kx' x0k) (34)

holds at x0, we say that f is di§erentiable at x0. The linear function

Tx0 (x)
)
= f (x0) +rf (x0) (x' x0) ; (35)

is then called the tangent plane of f at x0. Thus, for a di§erentiable function,

f (x) = Tx0 (x) + o (kx' x0k) : (36)

Contrary what is stated in the Örst edition of N&W (and numerous other non-mathematical
textbooks!), it is not su¢cient that all partial derivatives exist at x0 (Think about this for a
while: The components of rf contain only partial derivatives of f along the coordinate axis.
Find a function on R2 where rf (0) = 0 but which, nevertheless, is not di§erentiable at x = 0.
E.g., consider the function deÖned as sin 2H in polar coordinates)

The next term of the n-dimensional Taylor Formula is derived similarly:

g00 (E) =
d

ds

nX

i=1

@f (sx)

@xi
xi

,,,,,
s=0

=

nX

i;j=1

#
@2f (sx)

@xi@xj

$,,,,
s=0

xjxi = x
0H (Ex)x: (37)

The matrix H is called the Hess matrix of f , or the Hessian,

H (x) = r2f (x) =
%
@2f (x)

@xi@xj

&n

i;j=1

: (38)
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Yes, Optimization Theory uses sometimes the unfortunate notation r2f (x), which is not the
familiar Laplacian used in Physics and PDE theory!

From the above, the second order Taylor formula may now be written

f (x) = f (0) +rf (0)x+
1

2
x0r2f (Ex)x; E 2 (0; 1) : (39)

Higher order terms get increasingly more complicated and are seldom used.

By truncating the n-dimensional Taylor series after the second term, we end up with what is
called a quadratic function, or a quadratic form,

q (x) = a+ b0x+
1

2
x0Ax: (40)

By considering quadratic functions we may analyze many important algorithms in optimization
theory analytically, and one very important case occurs if A is positive deÖnite. The function q is
then convex (see below) and min q (x) is obtained for the unique vector

x' = 'A&1b: (41)

We shall, from time to time, use the notation îA > 0î to mean that the matrix A is positive
deÖnite (NB! This does not mean that all aij > 0!). Similarly, îA 0 0î means that A is positive
semideÖnite.

2.7 Matrix Norms

Positive deÖnite matrices lead to what is called matrix (or skew) norms on Rn. The matrix norms
are important in the analysis of the Steepest Descent Method, and above all, in the derivation of
the Conjugate Gradient Method.

Assume that A is a symmetric positive deÖnite n1 n matrix with eigenvalues

0 < M1 , M2 , ! ! ! , Mn; (42)

and a corresponding set of orthogonal and normalized eigenvectors feigni=1. Any vector x 2 R
n

may be expanded into a series of the form

x =

nX

i=1

:iei; (43)

and hence,

Ax =

nX

i=1

:iAei =

nX

i=1

:iMiei; (44)

and

x0Ax =

nX

i=1

:2iMi: (45)

The A-norm is deÖned
kxkA

)
=
!
x0Ax

"1=2
: (46)

Since

M1 kxk2 = M1
nX

i=1

:2i , x
0Ax , Mn

nX

i=1

:2i = Mn kxk
2 ; (47)
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we observe that
M
1=2
1 kxk , kxkA , M

1=2
n kxk ; (48)

and the norms kxk = kxk2 and kxkA are equivalent (as are any pair of norms in Rn). The
veriÖcations of the norm properties are left for the reader:

(i) x = 0() kxkA = 0;
(ii) k:xkA = j:j kxkA ;
(iii) kx+ ykA , kxkA + kykA :

(49)

In fact, Rn even becomes a Hilbert space in this setting if we deÖne a corresponding inner product
h ; iA as

hy; xiA
)
= y0Ax: (50)

It is customary to say that x and y are A-conjugate (or A-orthogonal) if hy; xiA = 0.

2.8 Basic Facts About Hilbert Space

A Hilbert space H is a linear space, and for our applications, consisting of vectors or functions.
In case you have never heard about a Hilbert space, use what you know about Rn.

It is Örst of all a linear space, so that if x; y 2 H and :; N 2 R, also :x+ Ny has a meaning and
is an element of H (We will not need complex spaces).

Furthermore, it has a scalar product h ; i with its usual properties,

(i) hx; yi = hy; xi 2 R;
(ii) h:x+ Ny; zi = : hx; zi+ N hy; zi : (51)

We say that two elements x and y are orthogonal if hx; yi = 0.

The scalar product deÖnes a norm,
kxk = hx; xi1=2 ; (52)

and makes H into a normed space (The Önal, and a little more subtle property which completes
the deÖnition of a Hilbert space, is that it is complete with respect to the norm, i.e. it is also
what is called a Banach space).

A Hilbert space may be Önite dimensional, like Rn, or inÖnite dimensional, like l2 (N) (This space
consists of all inÖnitely dimensional vectors x = fxig1i=1, where

P1
i=1 jxij

2 <1).

Important properties of any Hilbert space include

6 The Schwarzí Inequality: jhx; yij , kxk kyk

6 The Pythagorean Formula: If hx; yi = 0, then kx+ yk2 = kxk2 + kyk2

However, the really big theorem in Hilbert spaces related to optimization theory is the Projection
Theorem:

The Projection Theorem: If H0 is a closed subspace of H and x 2 H; then miny2H0 kx' yk
is obtained for a unique vector y0 2 H0; where

6 y0 is orthogonal to the error e = x' y0, that is, hy0; ei = 0,
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6 y0 is the best approximation to x in H0:

The theorem is often stated by saying that any vector in H may be written in a unique way as

x = y0 + e; (53)

where y0 2 H0, and y0 and e are orthogonal.

The projection theorem is by far the most important practical result about Hilbert spaces. It forms
the basis of everyday control theory and signal processing algorithms (e.g., dynamic positioning,
noise reduction and optimal Öltering).

Our Hilbert spaces will have sets of orthogonal vectors of norm one, feig, such that any x 2 H
may be written as a series,

x =
X

i

:iei;

:i = hx; eii ; i = 1; 2; ! ! ! (54)

The set feig is called a basis. Note also that

kxk2 =
X

i

:2i : (55)

If Hn is the subspace spanned by e1,! ! ! , en, that is

Hn = span fe1; ! ! ! ; eng =

(
y ; y =

nX

i=1

Niei ; fNig 2 Rn
)
; (56)

then the series of any x 2 H, truncated at term n, is the best approximation to x in Hn;

nX

i=1

:iei = arg min
y2Hn

kx' yk : (57)

If you ever need some Hilbert space theory, the above will probably cover it.

3 THE OPTIMIZATION SETTING

Since there is no need to repeat a result for maxima if we have proved it for minima, we shall
only consider minima in this course. That is, we consider the problem

min
x2*

f (x) : (58)

where # is called the feasible domain.

The deÖnitions of local, global, and strict minima should be known to the readers, but we repeat
them here for completeness.

6 x' is a local minimum if there is a neighborhood N of x' such that f (x') , f (x) for all
x 2 N .

6 x' is a global minimum if f (x') , f (x) for all x 2 #.
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6 A local minimum x' is strict (or an isolated) local minimum if there is an N such that
f (x') < f (x) for all x 2 N , x 6= x':

It is convenient to use the notation

x' = arg min
x2*(Rn

f (x) (59)

for a solution x' of (58). If there is only one minimum, which is then both global and strict, we
say it is unique.

3.1 The Existence Theorem for Minima

As we saw for some trivial cases above, a minimum does not necessarily exist. So what about a
criterion for existence? The following result is fundamental:

Assume that f is a continuous function deÖned on a closed and bounded set # # Rn. Then there
exists x' 2 # such that

f (x') = min
x2*

f (x) : (60)

This theorem, which states that the minimum (and not only an inÖmum) really exists, is the most
basic existence theorem for minima that we have. A parallel version exists for maxima.

Because of this result, we always prefer that the domain we are taking the minimum or maximum
over is bounded and closed (Later in the text, when we consider a domain #, think of it as closed).

Let us look at the proof. We Örst establish that f is bounded below over #, that is, infx2* f (x) is
Önite. Assume the opposite. Then there are xn 2 # such that f (xn) < 'n, n = 1; 2; 3 ! ! ! . Hence
limn!1 f (xn) = '1. At the same time, since # was bounded and closed, there are convergent
subsequences, say limk!1 xnk = x0 2 #. But limk!1 f (xnk) = '1 6= f (x0); thus contradicting
that f is continuous, and hence Önite at x0.

Since f is bounded below, we know that there is an a 2 R such that

a = inf
x2*

f (x) : (61)

Since a is the largest number that is less or equal to f (x) for all x 2 #, we also know that for
any n; there must be an xn 2 # such that

f (xn) < a+
1

n
(62)

(think about it!).

We thus obtain, as above, a sequence fxng that has a convergent subsequence fxnkg
1
k=1 ;

lim
k!1

xnk = x0 2 #: (63)

Since f is continuous, we also have

f (xnk) '!
k!1

f (x0) : (64)

On the other hand,

a , f (xnk) < a+
1

nk
: (65)
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(a) (b)

Ω
ΩΩ

(a) (b)
Figure 1: (a) Feasible directions in the interior and on the boundary of #. (b) Feasible directions when
# (the circle itself, not the disc!) does not contain any line segment.

Hence
f (x0) = a: (66)

But this means that
f (x0) = a = inf

x2*
f (x) = min

x2*
f (x) ; (67)

which is exactly what we set out to prove!

3.2 The Directional Derivative and Feasible Directions

Consider a function f : Rn ! R as above. The directional derivative of f at x in the direction
d 6= 0 is deÖned as

Of (x; d) = lim
"!0+

f (x+ "d)' f (x)
"

: (68)

Assume that rf is continuous around x. Then, from Taylorís Formula,

Of (x; d) = lim
"!0+

f (x+ "d)' f (x)
"

= lim
"!0+

rf (x+ E"d) ! ("d)
"

= rf (x) d; (69)

which is the important formula for applications. The notation Of (x; d) contains both a point x
and a direction d out from x. Note that the deÖnition does not require that kdk = 1 and that the
answer depends on kdk. The directional derivative exists where ordinary derivatives donít, like
for f (x) = jxj at the origin (What is O jxj (0; d)?).

If we consider a domain # # Rn and x 2 #, a feasible direction out from x is a vector d pointing
into #, as illustrated in Fig. 1 (a). Note that the length of d is of no importance for the existence,
since x + "d will be in # when " is small enough. At an interior point (surrounded by a ball in
Rn that is also in #), all directions will be feasible.

It will later be convenient also to consider limiting feasible directions, as shown in Fig. 1(b): A
direction d is feasible if there exists a continuous curve P (t) 2 #, where P (0) = x, so that

d

kdk
= lim
t!0+

P (t)' x
kP (t)' xk

: (70)
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3.3 First and Second Order Conditions for Minima

First order conditions deal with Örst derivatives.

The following result is basic: If Of (x; d) < 0, there is an "0 such that

f (x+ "d) < f (x) for all " 2 (0; "0): (71)

In particular, such a point can not be a minimum! The proof is simple: Since Of (x; d) < 0, also

f (x+ "d)' f (x)
"

< 0 for all " 2 (0; "0) (72)

when "0 is small enough.

Corollary 1: If x' is a local minimum for f (x) where directional derivatives exist, then Of (x'; d) 0
0 for all feasible directions.

Otherwise, we can walk out from x' in a direction d where Of (x'; d) < 0.

Corollary 2: If x' is a local minimum for f (x) ; and rf is continuous around x', then
rf (x') d 0 0 for all feasible directions.

Yes, in that case, Of (x'; d) is simply equal to rf (x') d.

Corollary 3 (N&W, Thm. 2.2): If x' is an interior local minimum for f (x) where rf
exists, then rf (x') = 0.

Assume that, e.g. @f
@xj

(x') 6= 0. Then one of the directional derivatives (in the xj or 'xj-direction)
are negative.

Corollaries 1ñ3 state necessary conditions; they will not guarantee that x' is really a minimum
(Think of f (x) = x3 at x = 0).

The second order conditions bring in the Hessian, and the Örst result is Thm. 2.3 in N&W:

If x' is an interior local minimum and r2f is continuous around x', then r2f (x') is positive
semideÖnite (r2f (x') 0 0).

The argument is again by contradiction: Assume that d0r2f (x') d = a < 0 for some d 6= 0.
Since rf (x') d = 0 (Corollary 3), it follows from Taylor Formula that

f (x' + "d)' f (x')
"2

=
1

2
d0r2f (x' + E"d) d '!

"!0

1

2
a < 0: (73)

Thus, there is an "0 such that
f (x' + "d) < f (x') (74)

for all " 2 (0; "0), and x' can not be a minimum.

However, contrary to the Örst order conditions, the slightly stronger property that r2f (x') is
positive deÖnite, r2f (x') > 0, and not only semideÖnite, gives a su¢cient condition for a strict
local minimum:

Assume that r2f is continuous around x', rf (x') = 0, and r2f (x') > 0;then x' is a strict
local minimum.

Since r2f is continuous and r2f (x') > 0, it will even be positive deÖnite in a neighborhood of
x', say kx' x'k < O (The eigenvalues are continuous functions of the matrix elements, which in
turn are continuous functions of x). Then, for 0 < kpk < O,

f (x' + p)' f (x') = rf (x') ! p+
1

2
p0r2f (x' + Ep) p

= 0 +
1

2
p0r2f (x' + Ep) p > 0: (75)

12



Convex Not convex

Figure 2: For a convex set, all straight line segments connecting two points are contained in the set.

Thus, x' is a strict local minimum.

Simple counter-examples show that only r2f (x') 0 0 is not su¢cient: Check f (x; y) = x2 ' y3.

To sum up, the possible minima of f (x) are at points x0 where Of (x0; d) 0 0 for all feasible
directions. In particular, if rf (x) exists and is continuous, possible candidates are

6 interior points where rf (x) = 0;

6 points on the boundary where rf (x) d 0 0 for all feasible directions.

4 BASIC CONVEXITY

Convexity is one of the most important concepts in optimization. Although the results here are
all quite simple and obvious, they are nevertheless very powerful.

4.1 Convex Sets

A convex set # in Rn is a set having the following property:

If x; y 2 #, then Hx+ (1' H) y 2 # for all H 2 (0; 1).

The concept can be generalized to all kind of sets (functions, matrices, stochastic variables, etc.),
where a combination of the form Hx+ (1' H) y makes sense.

It is convenient, but not of much practical use, to deÖne the empty set as convex.

Note that a convex set has to be connected, and can not consist of isolated subsets.

Determine which of the following sets are convex:

6 The space R2

6 f(x; y) 2 R2; x2 + 2y2 , 2g

6 f(x; y) 2 R2; x2 ' 2y2 , 2g

6 fx 2 Rn;Ax 0 b, b 2 Rm and A 2 Rm)ng

One basic theorem about convex sets is the following:

13



Theorem 1: If #1; ! ! ! ;#N # Rn are convex sets, then

#1 \ ! ! ! \ #n =
N\

i=1

#i (76)

is convex.

Proof: Choose two points x ; y 2 \Ni=1#i. Then Hx + (1' H) y 2 #i for i = 1; ! ! ! ; N , that is,
Hx+ (1' H) y 2 \Ni=1#i.

Thus, intersections of convex sets are convex!

4.2 Convex Functions

A real-valued function f is convex on the convex set # if for all x1; x2 2 #;

f (Hx1 + (1' H)x2) , Hf (x1) + (1' H) f (x2) ; H 2 (0; 1) : (77)

Consider the graph of f in #1R and the connecting line segment from (x1; f (x1)) to (x2; f (x2)),
consisting of the following points in Rn+1:

Hx1 + (1' H)x2;
Hf (x1) + (1' H) f (x2) ; H 2 (0; 1) :

The function is convex if all such line segments lie on or above the graph. Note that a linear
function, say

f (x) = b0x+ a; (78)

is convex according to this deÖnition, since in that particular case, Eqn. 77 will always be an
equality.

When the inequality in Eqn. 77 is strict, that is, we have "<" instead of ",", then we say that
the function is strictly convex. A linear function is convex, but not strictly convex.

Note that a convex function may not be continuous: Let # = [0;1) and f be the function

f (x) =

%
1; x = 0;
0; x > 0:

(79)

Show that f is convex. This example is a bit strange, and we shall only consider continuous
convex functions in the following.

Proposition 1: If f and g are convex, and :; N 0 0; then :f + Ng is convex (on the common
convex domain where both f and g are deÖned).

Idea of proof: Show that :f + Ng satisÖes the deÖnition in Eqn. 77.

What is the conclusion in Proposition 1 if at least one of the functions are strictly convex and :,
N > 0? Can Proposition 1 be generalized?

Proposition 2: If f is convex, then the set

C = fx; f (x) , cg (80)

is convex.

14



Figure 3: Simple examples of graphs of convex and strictly convex functions (should be used only as
mental images!).

Proof : Assume that x1; x2 2 C. Then

f (Hx1 + (1' H)x2) , Hf (x1) + (1' H) f (x2)
, Hc+ (1' H) c = c: (81)

This proposition has an important corollary for sets deÖned by several inequalities:

Corollary 1: Assume that the functions f1, f2, ! ! ! ; fm; are convex. Then the set

# = fx ; f1 (x) , c1; f2 (x) , c2; ! ! ! ; fm (x) , cmg (82)

is convex.

Try to show that the maximum of a collection of convex functions, g (x) = maxi ffi (x)g, is also
convex.

We recall that di§erentiable functions had tangent planes

Tx0 (x) = f (x0) +rf (x0) (x' x0) ; (83)

and
f (x)' Tx0 (x) = o (kx' x0k) : (84)

Proposition 3: A di§erentiable function on the convex set # is convex if and only if its graph
lies above its tangent planes.

Proof: Let us start by assuming that f is convex and x0 2 #. Then

rf (x0) (x' x0) = Of (x0;x' x0) = lim
"!0

f (x0 + " (x' x0))' f (x0)
"

, lim
"!0

[(1' ") f (x0) + "f (x)]' f (x0)
"

(85)

= f (x)' f (x0) :

Thus,
f (x) 0 f (x0) +rf (x0) (x' x0) = Tx0 (x) : (86)
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Connection lines

Tangent planes
x

z=f(x) Connection lines

Tangent planes
x

z=f(x)

Figure 4: A useful mental image of a convex function: Connecting line segments above, and tangent
planes below the graph!

For the opposite, assume that the graph of f lies above its tangent planes. Consider two arbitrary
points x1 and x2 in # and a point x5 on the line segment between them, x5 = Hx1 + (1' H)x2.
Then

f (x1) 0 f (x5) +rf (x5) (x1 ' x5) ;
f (x2) 0 f (x5) +rf (x5) (x2 ' x5) : (87)

Multiply the Örst equation by H and the last by (1' H) and show that this implies that

Hf (x1) + (1' H) f (x2) 0 f (x5) ; (88)

which is exactly the property that shows that f is convex.

The rule to remember is therefore:

The graph of a (di§erentiable) convex function lies above all its tangent planes and below the line
segments between arbitrary points on the graph.

The following proposition assumes that the second order derivatives of f , that is, the Hessian
r2f , exists in #. We leave out the proof, which is not di¢cult:

Proposition 4: A smooth function f deÖned on a convex set # is convex if and only if r2f is
positive semi-deÖnite in #: Moreover, f will be strictly convex if r2f is positive deÖnite.

The opposite of convex is concave. The deÖnition should be obvious. Most functions occurring in
practice are either convex and concave locally, but not for their whole domain of deÖnition.

All results above have counterparts for concave functions.

4.3 The Main Theorem Connecting Convexity and Optimization

The results about minimization of convex functions deÖned on convex sets are simple, but very
powerful:

Theorem 2: Let f be a convex function deÖned on the convex set #. If f has minima in #,
these are global minima and the set of minima,

= =

%
y ; f (y) = min

x2*
f (x)

&
(89)

is convex.
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Note 1: Let # = R and f (x) = ex. In this case the convex function f (x) deÖned on the convex
set R has no minima.

Note 2: Note that = itself is convex: All minima are collected at one place. There are no isolated
local minima here and there!

Proof: Assume that x0 is a minimum which is not a global minimum. We then know there is
a y 2 # where f (y) < f (x0). The line segment going from (x0; f (x0)) to (y; f (y)) is therefore
sloping downward. However, because f is convex,

f (Hx0 + (1' H) y) , Hf (x0) + (1' H) f (y) < f (x0) ; (90)

for all H 2 [0; 1). Hence, x0 can not be a local minimum, but a global minimum!

Assume that f (x0) = c: Then

= =

%
y ; f (y) = min

x2*
f (x)

&

= fy ; f (y) = cg (91)

= fy ; f (y) , cg ;

is convex by Proposition 2.

Corollary 1: Assume that f is a convex function on the convex set # and assume that the
directional derivatives exist at x0. Then x0 belongs to the set of global minima of f (x) in # if
and only if Of (x0; d) 0 0 for all feasible directions.

Proof: We already know that Of (x0; d) would be nonnegative if x0 is a (global) minimum, so
assume that x0 is not a global minimum. Then f (y) < f (x0) for some y 2 #, and d = y ' x0 is
a feasible direction (why?). But this implies that

Of (x0; y ' x0) = lim
"!0+

f (x0 + " (y ' x0)) ' f (x0)
"

, lim
"!0+

"f (y) + (1' ") f (x0)' f (x0)
"

= f (y)' f (x0) < 0: (92)

Corollary 2: Assume, that f is a di§erentiable convex function on the convex set # and that
rf (x0) = 0. Then x0 belongs to the set of global minima of f (x) in #.

Proof: Here Of (x0; d) = rf (x0) d = 0 (which is larger or equal to 0!).

Note that if f is convex on the convex set #, and Of (x; y ' x) exists for all x; y 2 #, then
inequality (92) may be written

f (y) 0 f (x) + Of (x; y ' x) :

Life is easy when the functions are convex, and one usually puts quite some e§ort either into
formulating the problem so that it is convex, or tries to prove that for the problem at hand!

4.4 JENSENíS INEQUALITY AND APPLICATIONS

Jensenís Inequality is a classic result in mathematical analysis where convexity plays an essential
role. The inequality may be extended to a double-inequality which is equally simple to derive.

17



( )λϕ

λ1λ nλ

1w
2w

3w

nw( )λϕ=z ( )( )λϕλ ,

( ) ( ) ( )nλθϕλϕθ +− 11

Figure 5: Think of the points as mass-particles and determine their center of gravity!

The inequality is among the few statements in mathematics where the proof is easier to remember
than the result itself!

Let ' be a convex function, ' : R! R. We Örst consider the discrete case where M1 , ! ! ! , Mn,
and fwigni=1 are positive numbers. Jensenís double-inequality then goes as follows:

'
!
7M
"
, ' (M) , (1' H)' (M1) + H' (Mn) ; (93)

where

7M =

Pn
i=1wiMiPn
i=1wi

;

' (M) =

Pn
i=1wi' (Mi)Pn

i=1wi
; (94)

H =
7M' M1
Mn ' M1

:

The name "Jensenís double inequality" is not very common, but suitable since there are two
(non-trivial) inequalities involved.

The proof may be read directly out from Fig. 5, thinking in pure mechanical terms: The center

of gravity for the n mass points at fMi; ' (Mi)gni=1 with weights fwig
n
i=1, is located at

0
7M; ' (M)

1
.

Because of the convexity of ', the ordinate ' (M) has to be somewhere between '
!
7M
"
and l

!
7M
"
,

that is, the point corresponding to 7M on the line segment joining (M1; ' (M1)) and (Mn; ' (Mn)).

That is all !

It is the left part of the double inequality that traditionally is called Jensenís Inequality.

Also try to write the inequality in the case when w is a positive function of M, and derive the
following inequality for a real stochastic variable:

exp (EX) , E (exp (X)) (95)

(Hint: The mass density is now the probability density w (M) for the variable, and recall that
EX =

R1
&1 Mw (M) dM).
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A lot of inequalities are derived from the left hand side of Jensenís double-inequality. However,
the Kantorovitch Inequality, discussed next is an exception, since it is based on the right hand
part of the inequality.

4.4.1 Application 1: Kantorovitch Inequality

The Kantorovitch Inequality goes as follows:

If A is a positive deÖnite matrix with eigenvalues M1 , M2 ! ! ! , Mn, then

kxk2A kxk
2
A!1

kxk4
,
1

4

(M1 + Mn)
2

M1Mn
: (96)

Since the inequality is invariant with respect to the norm of x, we shall assume that x =
Pn
i=1 :iei,

and set wi = :2i so that
nX

i=1

wi = kxk2 = 1: (97)

Since we are on the positive real axis, the function ' (M) = 1
6 is convex, and

kxk2A = x
0Ax =

nX

i=1

Miwi = 7M;

kxk2A!1 = x
0A&1x =

nX

i=1

1

Mi
wi = ' (M): (98)

Thus, by applying the RHS of Jensenís double-inequality,

kxk2A kxk
2
A!1 =

7M' (M)

, 7M
3
(1' H)

1

M1
+ H

1

Mn

4
(99)

= 7M

3#
1'

7M' M1
Mn ' M1

$
1

M1
+
7M' M1
Mn ' M1

1

Mn

4
:

The right hand side is a second order polynomial in 7M with a maximum value,

1

4

(M1 + Mn)
2

M1Mn
; (100)

attained for 7M = (M1 + M2) =2 (Check it!). This proves the inequality.

Show that the inequality can not, in general, be improved by considering A equal to the 2 1 2
unit matrix.

4.4.2 Application 2: The Convergence of the Steepest Descent Method

It will in general be reasonable to assume that f has the form

f (x) = f (x') +rf (x') (x' x') +
1

2
(x' x')0r2f (x') (x' x') + ! ! ! (101)

near a local minimum x'. The convergence can therefore be studied in terms of the Test problem

min
x
f (x) ; (102)
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where
f (x) = b0x+

1

2
x0Ax; A > 0:

We know that the gradient direction g = (rf)0 in this case is equal to b + Ax, and the Hessian
r2f is equal to A. The problem has a unique solution for b+Ax = 0, that is, x' = 'A&1b.

At a certain point xk, the steepest descent is along the direction 'gk = ' (b+Axk). We therefore
have to solve the one-dimensional sub-problem

:k = argmin
7
f (xk ' :gk) :

It is easy to see that the minimum is attained at a point

xk+1 = xk ' :kgk; (103)

where the level curves (contours) of f are parallel to gk, that is,

rf (xk+1) ! gk = 0; (104)

or g0k+1gk = 0. This gives us the equation

[b+A (xk ' :kgk)]0 gk =
(gk ' :kAgk)0 gk = 0; (105)

or

:k =
g0kgk
g0kAgk

=
kgkk
kgkkA

: (106)

The algorithm, which at the same time is an iterative method for the system Ax = 'b, goes as
follows:

Given x1 and g1 = b+Ax1:

for k = 1 until convergence do

:k =
g0kgk

g0k(Agk)

xk+1 = xk ' :kgk
gk+1 = gk ' :k (Agk)

end

In order to get an estimate of the error on step k; we note that

A&1gk = A
&1 (b+Axk) = 'x' + xk: (107)

Hence,
kxk ' x'k2A =

!
A&1gk

"0
A
!
A&1gk

"
= kgkk2A!1 ; (108)

and
kxk+1 ' x'k2A
kxk ' x'k2A

=
kgk+1k2A!1
kgkk2A!1

: (109)
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Let us look at kgk+1k2A!1 on the right hand side:

kgk+1k2A!1 = g
0
k+1A

&1 (gk ' :k (Agk))

= g0k+1A
&1gk ' :kg0k+1gk

= g0k+1A
&1gk (110)

= (gk ' :k (Agk))0A&1gk

= gkA
&1gk '

(g0kgk)
2

g0k (Agk)

= kgkk2A!1 '
kgkk4

kgkk2A
:

Thus,

kxk+1 ' x'k2A
kxk ' x'k2A

=
kgk+1k2A!1
kgkk2A!1

= 1'
kgkk4

kgkk2A!1 kgkk
2
A

, 1'
4M1Mn

(M1 + Mn)
2 (111)

=

#
M1 ' Mn
M1 + Mn

$2
=

#
T' 1
T+ 1

$2
;

where Kantorovitch Inequality was applied for the inequality in the middle. We recognize T =
Mn=M1 as the condition number for the Hessian A.

If the condition number of the Hessian is large, the convergence of the steepest descent method
may be very slow!

5 THE IMPLICIT FUNCTION THEOREM

The Implicit Function Theorem is a classical result in mathematical analysis. This means that
all mathematicians know it, but canít really recall where they learnt it. The theorem may be
stated in di§erent ways, and it is not so simple to see the connection between the formulation in,
e.g. N&W (Theorem A1, p. 585) and Luenberger (s. 462ñ3). In this short note we Örst state the
theorem and try to explain why it is reasonable. Then we give a short proof based on Taylorís
Formula and Banachís Fixed-point Theorem.

An implicit function is a function deÖned in terms of an equation, say

x2 + y2 ' 1 = 0: (112)

Given a general equation h(x; y) = 0, it is natural to ask whether it is possible to write this as
y = f(x). For Eqn. 112, it works well locally around a solution (x0; y0), except for the points
('1; 0) and (1; 0). In more di¢cult situations it may not be so obvious, and then the Implicit
Function Theorem is valuable.

The Implicit Function Theorem tells us that if we have an equation h(x; y) = 0 and a solution
(x0; y0), h(x0; y0) = 0, then there exists (if the conditions of the theorem are valid) a neighborhood
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N around x0 such that we may write

y = f(x);

h (x; f (x)) = 0; for all x 2 N : (113)

The theorem guarantees that f exists, but does not solve the equation for us, and does not say
in a simple way how large N is.

Consider the implicit function equation

x2 ' y2 = 0 (114)

to see that we only Önd solutions in a neighborhood of a known solution, and that we, in this
particular case, will have problems at the origin.

We are going to present a somewhat simpliÖed version of the theorem which, however, is general
enough to show the essentials.

Let
h(x; y) = 0 (115)

be an equation involving the m-dimensional vector y and the n-dimensional vector x. Assume
that h is m-dimensional, such that there is hope that a solution with respect to y exists. We thus
have m nonlinear scalar equations for the m unknown components of y:

Assume we know at least one solution (x0; y0) of Eqn. 115, and by moving the origin to (x0; y0),
we may assume that this solution is the origin, h(0; 0) = 0. Let the matrix B be the Jacobian of
h with respect to y at (0; 0):

B =
@h

@y
(0) = f

@hi
@yj

(0)g: (116)

The Implicit Function Theorem may then be stated as follows:

Assume that h is a di§erentiable function with continuous derivatives both in x and y. If the
matrix B is non-singular, there is a neighborhood N around x = 0, where we can write y = f(x)
for a di§erentiable function f such that

h(x; f(x)) 9 0; x 2 N : (117)

The theorem is not unreasonable: Consider the Taylor expansion of h around (0; 0):

h(x; y) = h(0; 0) +Ax+By + o (kxk ; kyk)
= Ax+By + o (kxk ; kyk) : (118)

The matrix A is the Jacobian of h with respect to x, and B is the matrix above. To the Örst
order, we thus have to solve the equation

Ax+By = 0; (119)

with respect to y, and if B is non-singular, this is simply

y = 'B&1Ax: (120)

The full proof of the Implicit Function Theorem is technical, and it is perfectly OK to stop the
reading here!
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For the brave, we start by stating Taylorís Formula to Örst order for a vector valued function
y = g (x), x 2 Rn ; y 2 Rm:

g(x) = g(x0) +rg(x5)(x' x0);
x5 = Hx0 + (I ' H)x: (121)

Note that since g has m components, rg(x5) is an m1 n matrix (the Jacobian),

rg(x5) =

2

6664

rg1 (x51)
rg2 (x52)

...
rgm (x5m)

3

7775
; (122)

and H is a matrix, H = diag fH1; ! ! ! ; Hmg : We shall assume that all gradients are continuous as
well, and hence

g(x) = g(x0) +rg(x0)(x' x0) + (rg(x5)'rg(x0))(x' x0)
= g(x0) +rg(x0)(x' x0) + a(x; x0)(x' x0) (123)

where a(x; x0) '!
x!x0

0.

Put
A(x; y) = h(x; y)'Ax'By; (124)

where, as above, A = @h=@x(0) and B = @h=@y(0). From Taylorís Formula,

A(x; y) = a(x; y)x+ b(x; y)y; (125)

where both a and b tend to 0 when x; y ! 0 . Thus, for any positive ", there are neighborhoods

B(x; rx) = fx; kxk < rxg;
B(y; ry) = fy; kyk < ryg; (126)

such that
(i) kA(x; y)k , " kxk+ " kyk ; x 2 B(x; rx); y 2 B(y; ry);
(ii) kA(x1; y1)' A(x2; y2)k , " kx1 ' x2k+ " ky1 ' y2k ;

x1; x2 2 B(x; rx); y1; y2 2 B(y; ry):
(127)

We now deÖne the non-linear mapping y ! T (y) as

y ! T (y)
)
= 'B&1Ax'B&1A(x; y); (128)

and will show that this mapping is a contraction on B(y; ry) for all x 2 B(x; rx). This is the core
of the proof.

Choose " so small that " + jjB&1jj" < 1. Then, Önd rx and ry such that (i) and (ii) hold, and
also ensure that rx is so small that

rx <
"

jjB&1Ajj+ jjB&1jj"
ry: (129)

Let y 2 B(y; ry) and x 2 B(x; rx). Then,

jjT (y)jj = jj 'B&1Ax'B&1A(x; y)jj

, jjB&1Ajjjjxjj+ jjB&1jj (" kxk+ " kyk)

, (jjB&1Ajj+ jjB&1jj")rx + jjB&1jj"ry (130)

, "ry + jjB&1jj"ry , ry:
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Thus T (B(y; ry)) # B(y; ry). Moreover,

kT (y1)' T (y2)k = jjB&1 (A(x; y1)' A(x; y2)) jj

, " jjB&1jj ky1 ' y2k (131)

< (1' ") ky1 ' y2k :

The Banach Fixed-point Theorem now guarantee solutions y0 2 B(y; ry) fulÖlling

y0 = T (y0) = 'B&1Ax'B&1A(x; y0); (132)

or
Ax+By0 +A(x; y0) = h(x; y0) = 0 (133)

for all x 2 B(x; rx)!

This proves the existence of the function x! f(x) = y0 in the theorem for all x 2 B(x; rx).

The continuity is simple:

y2 ' y1 = 'B&1A(x2 ' x1)'B&1 (A(x2; y2)' A(x1; y1)) ; (134)

giving
ky2 ' y1k ,

;;B&1A
;; kx2 ' x1k+

;;B&1
;; (" kx2 ' x1k+ " ky2 ' y1k) ; (135)

and hence

ky2 ' y1k ,

;;B&1A
;;+

;;B&1
;; "

1' kB&1k "
kx2 ' x1k :

Di§erentiability of f in the origin follows from the deÖnition and (ii) above. Proof of the dif-
ferentiability in other neighboring locations is simply to move the origin there and repeat the
proof.

Luenberger gives a more complete and precise version of the theorem. The smoothness of f
depends on the smoothness of h.

A Önal word: Remember the theorem by recalling the equation

Ax+By = 0; (136)

where A = @h=@x(0) and B = @h=@y(0).
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1 Reading

Chapter 1 in Nocedal and Wright, “Numerical optimization.”

2 What is optimization?

Optimum (the neuter form of optimus) originates from the Latin, and translates
to English as “the best.” Therefore, “to optimize something (system/process/acitivity
etc)” is normally understood as “to bring something to its best possible state.”
There are three important terms in this interpretation, which need further clar-
ification:

– “To bring”: a modeller needs to identify the parameters of the system (pro-
cess, activity), which can be varied. These may be discrete or real-valued
parameters, or even more general objects such as functions, geometric sur-
faces, or similar. In this course we will mostly deal with parameters assuming
real values. It will be convenient to collect all such parameters in a vector
x 2 Rn of optimization or decision variables.

– “The best”: in order to compare the states corresponding to various param-
eter values we need to introduce a total ordering on the set of parameters.
Typically this is done by employing a real-valued objective or cost function
x 7! f(x) 2 R (sometimes x 7! f(x) 2 R[ {+1}), with the convention that
the “better” values of the parameters correspond to the smaller values of f .
Thus to choose the best parameter values we need to find x corresponding
to the smallest value of f .

– “Possible”: not all combinations or values of the parameters are valid. Lim-
ited availability of physical resources (time, money, raw materials, labour,
etc) or demand requirements may introduce upper and lower limits on the
parameters. There might be technical/logical restrictions on the values or the
relationships between various parameters. We will abstractly collect all the
admissible values of the parameters for the problem under the consideration
into a feasible set ⌦.
In most applications, the set ⌦ is defined as a solution set to a system of
inequalities and equalities, which results from the list of all the restrictions
on the parameters:

⌦ = {x 2 Rn | g
i

(x) � 0, i 2 I, g
j

(x) = 0, j 2 E }, (1)



and the function g

i

, i 2 I and g

j

, j 2 E will be referred to as the inequality

and equality constraints

1. Depending on whether the constraints are present,
we classify the problem (2) as constrained or unconstrained.

To summarize, we will be concerned with solving problems of the type

minimize f(x),

subject to x 2 ⌦,

(2)

where ⌦ may be further described with inequality and equality constraints. One
may generalize this framework in many ways; for example, instead of parameters
in Rn we may consider other spaces with di↵erent topological and/or algebraic
structures, such as for example spaces of matrices, functions, curves and surfaces,
etc. Instead of inequality (equality) constraints of the type g

i

(x) � 0 (g
i

(x) = 0)
one may instead demand g(x) 2 K, where K is a cone

2 (satisfying some tech-
nical requirements) in a suitable vector space. We will keep the problem formu-
lation (2) as it provides plenty of the room for modelling, development of the
theory, and e�cient algorithms. Furthermore, this is the formulation considered
in the textbook of the course.

Please note that people often use the expression mathematical programming

interchangeably with optimization. The program refers to a “decision program”
and not a computer program, as optimization/mathematical programming has
a much longer history than computer programming.

3 What does it mean to solve the problem (2)?

One distinguishes between two most important types of solutions to (2).

Definition 1 (Global minimum). A point x

⇤ 2 ⌦ is called the point of global
minimum, if for every x 2 ⌦ we have the inequality f(x⇤)  f(x).

Geometrically, x

⇤ is a point of global minimum if the graph { (x, f(x)) |
x 2 ⌦ } lies “above” the horizontal plane { (x, f(x⇤)) | x 2 ⌦,↵ = f(x⇤) } and

touches it at the point (x⇤
, f(x⇤)) (but possibly at other points, too).

Points of global minimum may not exist even when the function is bounded
from below:

Example 1. Consider a positive function f(x) = exp(�x

2). This function ap-
proaches zero arbitrarily close: for every ✏ > 0 it su�ces to take |x| > [log(✏�1)]1/2

to get 0 < f(x) < ✏. Therefore, the global minimum, if existed, must satisfy the
inequality f(x⇤) < ✏, for any ✏ > 0. However, there is no x

⇤ 2 R such that
f(x⇤) = 0.

1 In this course we will assume that both I and E are finite index sets.
2 A cone C in a vector space is a set, which is invariant under multiplication with
positive scalars; that is �C = C, for every � > 0. Examples include the zero cone
{0}; the cone of vectors with non-negative components Rn

+; or the cone of symmetric
positive semi-definite matrices Sn

+.



Unless we have information about the global behaviour of the function over
the feasible set, global solutions, even when exist, are incredibly di�cult to
recognize. Indeed, assume that an oracle provides us with a globally optimal
solution x

⇤ 2 ⌦, and our task is to verify her/his guess. Then, in accordance
with the definition 1, we should compare f(x⇤) with the value f(x), evaluated
at every other point x 2 ⌦, which is most often practically impossible. Instead,
we will look for points, which can be characterized with the knowledge of the
function only in the vicinity of a given point. For di↵erentiable functions such
an information will be available from the local Taylor series expansion of f and
the constraints.

Definition 2 (Local minimum). A point x

⇤ 2 ⌦ is called the point of local
minimum, if it is a point of global minimum in the feasible set restricted to some

neighbourhood of x

⇤
. That is, if there is ✏ > 0 such that for every x 2 { y 2 ⌦ |

ky � x

⇤k < ✏ } we have the inequality f(x⇤)  f(x). If the latter inequality is

strict whenever x 6= x

⇤
in the vicinity of x

⇤
, we say that x

⇤
is the point of strict

local minimum.

4 Very briefly: “standard tricks” in optimization
modelling

4.1 Auxiliary optimization variables

It is often convenient to introduce additional variables, which are not associated
with the parameters of the system we are trying to model. One standard type
of such auxiliary variables is a slack variable, which allows us to switch from
inequality to equality constraints (and simple bounds):

g(x) � 0 () g(x)� s = 0, s � 0.

Note that one may, in principle, replace s with s

2 and drop the restriction on
the slack variable, but most often this is not such a good idea.

Another type of auxiliary variables appears when we move the objective
function f into constraints instead:
(

min
x

f(x),

s.t. x 2 ⌦,

()

8
<

:

min
(x,z)

z,

s.t. (x, z) 2 { (x̃, z̃) 2 ⌦ ⇥ R | z̃ � f(x̃) � 0 },

This trick allows one to transform a problem of minimizing a piece-wise smooth
objective function f(x) = max{f1(x), f2(x), . . . , fk(x)}, where f1, . . . , fk are
smooth functions, into a problem with smooth objective and constraints:

min
(x,z)

z,

s.t. x 2 ⌦,

z � f1(x) � 0,

...

z � f

k

(x) � 0.



Similar tricks allow one to deal with minimizing a variety of non-smooth func-
tions such as k · k1 and k · k1-norms of vectors (provide the details utilizing the
fact that |x| = max{x,�x}).

4.2 Soft and hard constraints

In some applications, most notably financial, certain constraints may be violated
at a cost. Such constraints are typically known as “soft” constrains (as opposed
to the “hard” constraints, which must be satisfied no matter what). We can
turn a “hard” inequality constraint g(x) � 0 into a soft constraint as follows.
First, we introduce an artificial variable s � 0, which will measure how much
the constraint g is violated, that is, we consider the constraints g(x) + s � 0,
s � 0 instead. Second, we need to add the cost of violation, say h(s)3, to the
objective function. That is, instead of f(x) we minimize f(x) + h(s).

The idea of soft constraints is also utilized in penalty methods for constrained
optimization, allowing one to transform the constrained problem into an uncon-
strained one, or the one with very simple constraints.

5 Very briefly: classification

– Unconstrained optimization refers to the situations when ⌦ = Rn in (2);
constrained optimization otherwise.

– Linear programming/optimization: the objective function and all the con-
straints are first order polynomials; non-linear optimization otherwise.

– Quadratic programming : the objective function is a second order polynomial
and all the constraints are first order polynomials.

– Convex programming/optimization: the objective function and the feasible
set ⌦ is convex; if the constraints are given explicitly, then all the inequality
constraints are concave functions and the equality constraints are a�ne (first
order polynomials).

– Non-smooth/non-di↵erentiable optimization: normally refers to the situa-
tion, when the objective function f(x) (or some of the constraints, though
problems in this class are often unconstrained or involve only simple con-
straints, such as bounds on the variables) is not di↵erentiable at least at
some points. If all the functions involved in the problem are at least once
di↵erentiable, we deal with di↵erentiable (sometimes smooth) optimization.

– Semi-infinite programming : the number of decision variables is finite, but
the number of constraints is infinite.

– Semi-definite programming : optimization over spaces of symmetric matrices,
restricted to be positive semi-definite.

– Calculus of variations : optimization over spaces of functions.

3 A typical example of h(s) is Ms, where M > 0 is the cost of violating the constraint
g(x) � 0 “per unit of violation.”



6 Basic existence of solutions results

One of the weakest forms of continuity under which one may expect the prob-
lem (2) to admit solutions is as follows.

Definition 3 (Lower semi-continuity). Consider a function f : ⌦ ! R [
{+1} on a set ⌦ ✓ Rn

. We say that the function f is lower semi-continuous

(l.s.c.) on ⌦, if the lower level set ⌦

↵

= {x 2 ⌦ | f(x)  ↵ } is relatively closed

4

in ⌦ for any ↵ 2 R.

Example 2. Lower semi-continuous functions appear naturally in the context of
so-called min-max (inf-sup) problems, where we try to find a minimum of a
function, which is defined through a maximization problem. For example, let

f(x) = sup
t2R

{1� exp(�x

2
t

2)}.

Then

f(x) =

(
0, if x = 0,

1, otherwise,

which is clearly discontinuous at x = 0, despite the fact that each individual
function 1 � exp(�x

2
t

2) is continuous in (x, t). Nevertheless, the function f is
still l.s.c. on R, because for any ↵ 2 R we have

⌦

↵

=

8
><

>:

;, ↵ < 0,

{0}, 0  ↵ < 1,

R, 1  ↵,

all of which are closed sets in R.

We now define the concept of a minimizing sequence. One can establish
the existence of solutions to the problem (2) without appealing to minimizing
sequences (as indeed we will). Nevertheless, minimizing sequences constitute an
important and often utilized concept in their own right.

Definition 4 (Minimizing sequence). Assume that ⌦ 6= ; and let f

⇤ =
inf

x2⌦

f(x).5 By the definition of the infimum, there is a sequence of numbers

{f
k

}1
k=1 in the set { f(x) | x 2 ⌦ }, such that lim

k!1 f

k

= f

⇤
. By the definition

of f

k

, there is x

k

2 ⌦ such that f

k

= f(x
k

). We say that the sequence {x
k

}1
k=1

is a minimizing sequence for the problem (2).

4 Relative closedness in this notation means that if a sequence of points {xk}1k=1 in
⌦↵ converges to a limit x⇤ 2 ⌦, then x

⇤ 2 ⌦↵. In other words, the set ⌦↵ contains
all its limit points, which are also in ⌦. Therefore closedness, relative to the whole
space Rn, coincides with the regular definition of closedness.

5 We adopt the convention that every subset of the real line has an infimum, or the
greatest lower bound, by letting the infimum of the set unbounded from below be
equal to �1 and the infimum of the empty set be equal +1. We apply a similar
convention to sup.



We know that the function is continuous i↵ the convergence of sequences
is preserved by the function, that is, x

k

! x

⇤ =) f(x
k

) ! f(x⇤). One can
provide a similar characterization of lower semi-continuity as well, which will be
useful for our purposes when applied to minimizing sequences.

Proposition 1. A function f : ⌦ ! R [ {+1} is l.s.c. on ⌦ i↵ for every se-

quence {x
k

}1
k=1 in ⌦ converging to x

⇤ 2 ⌦ it holds that f(x⇤)  lim inf
k!1 f(x

k

)6

Proof. Suppose that f is l.s.c. on ⌦. For the sake of contradiction assume that for
some convergent sequence {x

k

}1
k=1 in ⌦ it holds that lim inf

k!1 f(x
k

) < f(x⇤),
where ⌦ 3 x

⇤ = lim
k!1 x

k

. In particular, we get that lim inf
k!1 f(x

k

) < +1
and as a result there is ↵ 2 R, such that lim inf

k!1 f(x
k

) < ↵ < f(x⇤). We
will demonstrate that there there is a subsequence of x

k

, which belongs to ⌦

↵

,
thus showing that ⌦

↵

is not relatively closed (it does not contain one of its
limit points, namely x

⇤); this is our desired contradiction with the lower semi-
continuity of f . We proceed with yet another proof by contradiction. Indeed, sup-
pose that ⌦

↵

contains only finitely many elements x
k

, that is, there is an index N

such that for all k � N it holds that x
k

62 ⌦

↵

, or equivalently, f(x
k

) > ↵. Then
inf

k�n

f(x
k

) � ↵ for every n � N and as a result also lim
n!1 inf

k�n

f(x
k

) � ↵.
This contradicts with our choice of ↵: lim inf

k!1 f(x
k

) < ↵ < f(x⇤).
We now prove the implication in the opposite direction. Suppose that f is

not l.s.c. on ⌦. Then there is ↵ 2 R such that ⌦
↵

is not relatively closed in ⌦.
That is, there is a sequence {x

k

}1
k=1 in ⌦

↵

, with a limit x

⇤ 2 ⌦ \ ⌦
↵

. Clearly,
we then have lim inf

k!1 f(x
k

)  lim inf
k!1 ↵ = ↵ < f(x⇤), which concludes

the proof. ut
We now establish existence of solutions to the problem (2) without requiring

any algebraic/geometric properties of the problem (such as convexity). The result
is normally attributed to Weierstrass.

Theorem 1 (Existence of solutions). Let ⌦ be a non-empty compact

7
set

in Rn

(or any other metric space, for that matter) and f : ⌦ ! R [ {+1} be

lower semi-continuous on ⌦. Then the problem (2) admits at least one global

minimum.

Proof. Let {x
k

}1
k=1 be a minimizing sequence for the problem (2) (see Defini-

tion 4). Owing to the compactness of ⌦ it holds that for {x
k

}1
k=1 contains a

subsequence, say {x0
k

}1
k=1, converging to some point x⇤ 2 ⌦. Utilizing the defi-

nition of the infimum, Proposition 1, the fact that {f(x0
k

)}1
k=1 is a subsequence

of the converging sequence {f(x
k

)}1
k=1, and the definition of the minimizing

sequence we obtain the following string of inequalities:

inf
x2⌦

f(x)  f(x⇤)  lim inf
k!1

f(x0
k

) = lim
k!1

f(x0
k

) = lim
k!1

f(x
k

) = inf
x2⌦

f(x),

6 Recall that for any sequence {↵k}1k=1 of real numbers, lim infk!1 ↵k =
limn!1 infk�n ↵k. lim inf (finite or infinite) exists for an arbitrary sequence, as the
sequence �n = infk�n ↵k is monotonically non-decreasing.

7 Recall that a subset of Rn is compact i↵ it is closed and bounded (Heine–Borel
Theorem). Further, from any sequence in a compact subset of a metric space we can
extract a converging subsequence, which is utilized in the proof of Theorem 1.



which implies that x⇤ 2 ⌦ is the point of global minimum for (2). ut

We now give an alternative proof of Theorem 1, which does not appeal to
the convergence of sequences.

Proof (Alternative proof of Theorem 1). Let f

⇤ = inf
x2⌦

f(x), and let ⌦

↵

de-
note the lower-level set of f for any real number ↵. Every ⌦

↵

is a closed set
owing to the lower semi-continuity of f , which is non-empty for any ↵ > f

⇤

by the definition of inf. Therefore, for any finitely many numbers ↵1 > f

⇤,
↵2 > f

⇤,. . . ,↵
N

> f

⇤ it holds that

\N

i=1⌦↵i = ⌦mini=1,...,N ↵i 6= ;,

since min
i=1,...,N ↵

i

> f

⇤. This is precisely the condition for the family of closed
sets {⌦

↵

| ↵ > f

⇤ } to have a finite intersection property. Owing to the com-
pactness of ⌦ it holds that \

↵>f

⇤
⌦

↵

6= ;. By construction, every point in
\
↵>f

⇤
⌦

↵

= ⌦

f

⇤ is a point of global minimum for (2); in particular, f⇤
> �1

as f cannot assume the value �1. ut

When establishing the existence of solutions to optimization problems, one
can trade the compactness of ⌦ for the growth of f at infinity, which guarantees
that the minimizing sequences stay bounded.

Definition 5. A function f : ⌦ ! R [ {+1} is called coercive if f(x) ! +1
whenever kxk ! +1.

Theorem 2. Let ⌦ be a non-empty closed set in Rn

and f : ⌦ ! R be a coercive

lower semi-continuous function on ⌦. Then the problem (2) admits at least one

global minimum.

Exercises

1. Prove Theorem 2.
2. Show that all the assumptions in Theorems 1 and 2 are essential. Indeed,

Example 1 shows that either compactness or coercivity are essential for the
existence of solutions. Demonstrate that the lower semi-continuity is also
needed by constructing an instance of the problem (2) with a not lower
semi-continuous objective function f , which does not attain its infimum on
some non-empty compact feasible set ⌦.

3. Let f : Rn ! R be a quadratic polynomial f(x) = 0.5xT

Gx + x

T

d, where
G 2 Rn⇥n is a symmetric positive definite matrix, and d 2 Rn is arbitrary.
Show that f is coercive on Rn. (Hint: expand x in terms of the eigenvectors
of G to estimate x

T

Gx from below.)
4. Provide details on how one can transform the non-smooth optimization prob-

lem of minimizing the 1- or 1-norm of a vector to a smooth minimization
problem by introducing auxiliary variables and additional constraints.



5. * Example 2 is not incidental! Indeed, consider a function f : Rn ! R[{+1}
defined as f(x) = sup{ f

s

(x) | s 2 S }, where each function f

s

: Rn ! R is
l.s.c., and S is an arbitrary index set (possibly uncountable). Show that f is
l.s.c. on Rn.

6. Show that the function f : ⌦ ! R is l.s.c. on ⌦ if and only if it satisfies
the following “✏/�” definition of lower semi-continuity: for any x

⇤ in ⌦ and
any ✏ > 0 there is � > 0 such that for any x 2 ⌦, kx � x

⇤k < � =)
f(x⇤) < f(x) + ✏. (You may use the equivalent characterization of lower
semi-continuity given by Proposition 1).



Optimization Theory

Convergence of descent methods with backtracking
(Armijo) linesearch

Anton Evgrafov

Department of Mathematical Sciences, NTNU anton.evgrafov@math.ntnu.no

Read: Section 3.1 in Nocedal and Wright, “Numerical optimization,” in par-
ticular Algorithm 3.1, p. 37.

Consider the following iteration:

xk+1

= xk + ↵kpk, k = 0, 1, 2, . . .

where Bk = B

T
k ,

Bkpk = �rf(xk),

and ↵k is selected using the backtracking (Armijo) linesearch with parameters
c, ⇢ 2 (0, 1).

Theorem 1. Suppose that

1. f : Rn ! R is continuously di↵erentiable;

2. the set S := {x 2 Rn | f(x)  f(x
0

)} is bounded;

3. the matrices Bk are uniformly positive definite and bounded, that is 9m >

0,M > 0 : m  �

min

(Bk)  �

max

(Bk)  M , where �

min

and �

max

are the

smallest and the largest eigenvalues of Bk.

Then the sequence {xk} is bounded, and every its limit point x̂ is a stationary

point for f .

Proof. Owing to the su�cient descent condition in the linesearch procedure
the sequence f(xk), k = 0, 1, 2, . . . is non-increasing; thus xk 2 S for all k;
in particular it is bounded and therefore has at least one limit point. The set
S is closed because f is continuous, and thus is compact owing to the assump-
tion 2 and Heine–Borel theorem. Therefore, the function f attains its minimum
value on S (Weierstrass theorem) and thus is bounded from below on S. As
a result, the non-increasing sequence f(xk) has a finite limit, and furthermore
limk!1[f(xk+1

)� f(xk)] = 0.
Owing to the su�cient descent condition it holds that

f(xk+1

)� f(xk)  c↵krf(xk)
T
pk = �c↵krf(xk)

T
B

�1

k rf(xk)

 �c↵k�max

(B�1

k )krf(xk)k2

 �cM

�1

↵kkrf(xk)k2  0.

(1)

The sequence on the left converges to 0, meaning that the sequence on the right
must also converge to zero. We will show that this implies that limk!1 krf(xk)k =
0.



Suppose that this is not true; then, for some subsequence of indices k

0 and
some ✏ > 0 we must have that krf(xk0)k � ✏. From (1) it then follows that
limk0!1 ↵k0 = 0. In particular, it means that the step ↵k0

/⇢ was not acceptable
to the linesearch procedure for all large k

0, that is

f(xk0 + ↵k0
⇢

�1

pk0) > f(xk0) + c↵k0
⇢

�1rf(xk0)T pk0
. (2)

The sequence of directions pk = �B

�1

k rf(xk) is bounded. Indeed, by our
assumption 3 the norms kB�1

k k = �

�1

min

(Bk)  m

�1. Furthermore, the continuous
function x 7! krf(x)k attains its maximum over the compact set S, and thus
krf(xk)k is bounded by this maximum value, for all k. As a result, we may
assume that for some subsequence of k0, say k

00, it holds that limk00!1 xk00 = x̂

and limk00!1 pk00 = p̂. Rearranging the terms in (2) we get

0  lim
k00!1

f(xk00 + ↵k00
⇢

�1

pk00)� f(xk00)

↵k00
⇢

�1

� crf(xk00)T pk00

= (1� c)rf(x̂)T p̂,

(3)

and therefore rf(x̂)T p̂ � 0 as 0 < c < 1. On the other hand,

rf(x̂)T p̂ = lim
k00!1

rf(xk00)T pk00 = � lim
k00!1

rf(xk00)TB�1

k00 rf(xk00)

 �M

�1

✏

2

< 0.
(4)

However, equations (3) and (4) contradict each other. This must mean that our
assumption that krf(xk0)k � ✏ over some subsequence k

0 is wrong and in fact

lim
k!1

krf(xk)k = 0. (5)

Finally, let x̂ be an arbitrary limit point of {xk}, that is, x̂ = limk000!1 xk000

for some subsequence k000. Owing to the continuity of the function x 7! krf(x)k
(assumption 1) and (5) it holds that krf(x̂)k = 0, as we claimed. ut

Exercise: Using this theorem, show that the steepest descent algorithm with
Armijo (backtracking) linesearch converges to the minimim of Rosenbrock func-
tion from any starting point.



Introduction to optimality conditions:

Optimality conditions for optimization over convex sets?

Anton Evgrafov

Department of Mathematical Sciences, NTNU anton.evgrafov@math.ntnu.no

1 Special case: optimization over convex sets

Consider a constrained optimization problem

minimize
x2Rn

f(x),

subject to x 2 ⌦,

(1)

where the feasible set ⌦ ⇢ Rn is assumed to be non-empty and closed, and the
objective function f : Rn ! R is continuously di↵erentiable on ⌦. Additionally,
all the results in this note apart from Proposition 1, case 1, and Proposition 3,
case 1, apply when ⌦ is convex.

Example 1. We have already encountered problems of the type (1) with a closed
and convex ⌦ in this course:

– the trust-region subproblem

minimize
p2Rn

m

k

(p) = f(x
k

) +rf(x
k

)T p+
1

2
p

Tr2
f(x

k

)p,

subject to kpk  �

k

,

is of this class since the ball ⌦ = { p 2 Rn | kpk  �

k

} is convex and closed;
– the problem leading to DFP/BFGS-type quasi-Newton update formulas:

minimize
B2Rn⇥n

f(B) =
1

2
kB �B

k

k2,

subject to B �B

T = 0,

Bs

k

= y

k

,

where B

k

2 Rn⇥n, s
k

, y

k

2 Rn are given, and k · k is typically a scaled
Frobenius norm of the matrix. (Convince yourself that the set {B 2 Rn⇥n |
B

T = B,Bs

k

= y

k

} is convex and closed. More generally, check that the
solution set of any system of linear equations and non-strict inequalities is
convex and closed.)

? Section 1 of this note is based on Section 4.4 in “Introduction to continuous
optimization” by N. Andréasson, AE, M. Patriksson, E. Gustavsson, M. Önnheim:
Studentlitteratur (2013), 2nd ed.



In the theory of unconstrained optimization we have started with the first or-
der necessary optimality conditions, which could be succinctly stated asrf(x) =
0 (see Theorem 2.2 in N&W). This statement expresses the fact that at any point
of local minimum x 2 Rn, there should be no direction p 2 Rn, along which we
could move and decrease the function (direction of descent). In the absence of
constraints we are allowed to move along any direction, and thus we could always
take the steepest descent direction p = �rf(x), unless the gradient vanishes at
x.

The situation is drastically di↵erent in the presence of constraints. Indeed,
if we take x to be on the boundary of ⌦, that is x 2 ⌦ \ interior(⌦), then it
may happen that we cannot take even the smallest step along some directions
p 2 Rn without leaving ⌦, that is, 8“small”� > 0 : x+ �p 62 ⌦. Therefore these
directions may still be directions of descent for f and yet not prevent x 2 ⌦

from being a point of local minimum for f over ⌦.

Definition 1 (Feasible direction). Direction p 2 Rn is a feasible direction
at x 2 ⌦ ⇢ Rn if small steps along p do not take us outside of ⌦.

Formally, p 2 Rn is a feasible direction at x 2 ⌦ ⇢ Rn if there is �̂ > 0 such
that for all 0 < � < �̂ the inclusion x+ �p 2 ⌦ holds.

Exercise 1 (Feasible directions for linear constraints). Suppose that all equality
and inequality constraints are linear, that is, c

i

(x) = a

T

i

x+ b

i

, a
i

2 Rn, b
i

2 R,
i 2 I [J , see eq. (12.1) in N&W. Show that the set of feasible directions p 2 Rn

at x 2 ⌦ is

{ p 2 Rn | aT
i

p = 0, i 2 E , a

T

i

p � 0, i 2 A(x) \ I },

where A(x) is the set of active or binding constraints at x, see Definition 12.1
in N&W.

With this definition we are ready to prove the following version of the first
order optimality conditions for constrained problems.

Proposition 1 (First order necessary optimality conditions). Consider
a set ⌦ ⇢ Rn and a function f : Rn ! R. Suppose that x⇤ 2 ⌦ is a point of local
minimum for f over ⌦, and further assume that f is continuously di↵erentiable
around x

⇤.

1. Then for every feasible direction p 2 Rn at x⇤ it holds that rf

T (x⇤)p � 0.
2. If, additionally, ⌦ is convex then

rf(x⇤)T (x� x

⇤) � 0, 8x 2 ⌦. (2)

Proof. 1. The proof is along the lines of Theorem 2.2 in N&W. For the sake of
contradiction, let p be a feasible direction at x⇤ but rf(x⇤)T p < 0. Owing
to the continuity of rf(·) around x

⇤, the same inequality holds at all nearby
points, that is, rf(x⇤ + �p)T p < 0, for all 0  � < �̄. Furthermore, the
point x

�

= x

⇤ + �p is feasible, for all 0 < � < �̂, owing to Definition 1.



Utilizing the first order Taylor series expansion we conclude that for every
0 < � < min{�̄, �̂} we have the inclusion x

�

2 ⌦ and the strict inequality

f(x
�

) = f(x⇤) +rf(x⇤ + t

�

�p)T p < f(x⇤),

where 0 < t

�

< 1. Since x

�

! x

⇤ as � ! 0 the point x⇤ cannot be a point of
local minimum for f over ⌦.

2. It su�ces to show that p

x

= x � x

⇤, x 2 ⌦, is a feasible direction at x

⇤.
Indeed, 80 < � < 0 we have

x

⇤ + �p

x

= x

⇤ + �(x� x

⇤) = �x+ (1� �)x⇤ 2 ⌦,

owing to the convexity of ⌦.
ut

As before, we will refer to the points satisfying the first order necessary
conditions as the stationary points.

For a given point x̄ 2 ⌦ let us consider the following linearization the original
problem (1):

minimize
x2Rn

m(x) = f(x̄) +rf(x̄)T (x� x̄),

subject to x 2 ⌦.

(3)

One can formulate the equivalent characterization of local optimality over convex
sets in terms of the linearized problem (3).

Corollary 1. Under the assumptions of Proposition 1, case 2, the locally op-
timal solution x

⇤ to (1) must be a globally optimal solution to the linearized
problem (3), where the linearization point is x̄ = x

⇤.

Proof. For any x 2 ⌦ we have

m(x) = f(x⇤) +rf(x⇤)T (x� x

⇤)| {z }
�0, see (2)

� f(x⇤) = m(x⇤).

ut

In fact the problem (3) has been utilized for algorithmic purposes. Indeed,
since the linearization point x̄ is feasible, it holds that any solution x̄

⇤ to this
convex optimization problem, whenever exists (for example when ⌦ is bounded),
satisfies m(x̄⇤)  m(x̄) = f(x̄). Thus if we were able to find a solution to (3)
such that m(x̄⇤) < f(x̄) then the direction p = x̄

⇤� x̄ satisfies rf(x̄)T p < 0 and
thus is a feasible descent direction for f at x̄. One may then perform linesearch
along such a direction and compute a better feasible point than x̄. Such a step
is the basis of some early first order algorithms for constrained optimization
(Frank–Wolfe or conditional gradient algorithm). For the algorithm based on
these ideas to be e�cient the subproblem (3) should be easier to solve than the
original problem (1). This is for example the case when ⌦ is a solution set for a
system of linear equations and inequalities.

For convex objective functions the condition (2) is also su�cient for global
optimality over ⌦.



Proposition 2 (Necessary and su�cient optimality conditions for con-

vex problems). Suppose that ⌦ ⇢ Rn is a convex set and f : Rn ! R is convex
and continuously di↵erentiable on ⌦. Then x

⇤ 2 ⌦ is a point of global minimum
for f over ⌦ if and only if (2) holds.

Proof. The necessity of (2) has been established in Proposition 1, thus is only
remains to show su�ciency. For di↵erentiable convex functions we can write, for
any x 2 ⌦,

f(x) � f(x⇤) +rf(x⇤)T (x� x

⇤)| {z }
�0

� f(x⇤),

where the first inequality is established in Proposition 3, “Basic tools” note.
Thus f attains its smallest value over ⌦ at x⇤ 2 ⌦. ut

The variational inequality (2) may still be di�cult to check in practical sit-
uations as it involves infinitely many inequalities, one for every x 2 ⌦. It is
possible to convert it into a system of equations, which may be easier to verify.
In order to do this we need a concept of Euclidean projection.

Proposition 3. Let ⌦ ⇢ Rn be a non-empty and closed set, and z 2 Rn be an
arbitrary point. We consider the optimization problem

minimize
x2Rn

1

2
kx� zk22,

subject to x 2 ⌦.

(4)

1. There is at least one globally optimal solution to (4).
2. If, additionally, the set ⌦ is convex, then such a solution is unique.

Proof. 1. The triangle inequality implies that kx � zk2 � kxk2 � kzk2, and
thus the objective function in (4) is coercive. Therefore, the claim follows
from Theorem 2 in the Note on “Lower semi-continuity, compactness, and
existence of solutions.”

2. Suppose that x1 2 ⌦ and x2 2 ⌦ are both closest to z; then for every
0 < � < 1 we have the inequality

kz � [�x1 + (1� �)x2]k22 � kz � x1k22 = kz � x2k22,

since �x1 + (1� �)x2 2 ⌦. On the other hand,

kz � [�x1 + (1� �)x2]k22
= �

2kz � x1k22 + 2�(1� �)(z � x1)
T (z � x2) + (1� �)2kz � x2k22

 �

2kz � x1k22 + 2�(1� �)kz � x1k2kz � x2k2 + (1� �)2kz � x2k22
= kz � x1k2 = kz � x2k2,

where the equality sign in the Cauchy–Schwarz inequality is only possible
when z�x1 = ↵(z�x2) for some ↵ � 0. In view of kz�x1k = kz�x2k either
↵ = 1 or kz � x1k = kz � x2k = 0. In either case, x1 = x2, as claimed. ut



For a non-empty, closed, and convex ⌦ we will write ⇡

⌦

[z] to denote the
unique solution of the problem (4).

Proposition 4 (First order necessary optimality conditions and gradi-

ent projection). Consider a convex set ⌦ ⇢ Rn and a function f : Rn ! R.
Suppose that x

⇤ 2 ⌦ is a point of local minimum for f over ⌦, and further
assume that f is continuously di↵erentiable around x

⇤. Then for every ↵ > 0 it
holds that

⇡

⌦

[x⇤ � ↵rf(x⇤)] = x

⇤
, (5)

that is, x⇤ is a fixed point of the map x 7! ⇡

⌦

[x� ↵rf(x)].

Proof. Owing to Proposition 1 we know that (2) holds at x⇤. Also, x⇤ = ⇡

⌦

[z]
if and only if

r
x


1

2
kx� zk22

�����
T

x=x

⇤
(x� x

⇤) = (x⇤ � z)T (x� x

⇤) � 0, 8x 2 ⌦, (6)

owing to the convexity of the objective function in (4) and Proposition 2. It only
remains to substitute z = x

⇤ � ↵rf(x⇤) into (6) to conclude the proof. ut

Exercise 2. When we discussed the solution of the trust-region problem, we have
not established the necessity of the conditions (4.8) in N&W for the optimality,
only their su�ciency. Utilizing Proposition 4 and the explicit characterization
of the projection onto the trust-region show that every locally optimal solution
to the trust-region problem must satisfy the first order conditions (4.8a)–(4.8b)
in N&W for some non-negative scalar �.

Exercise 3. Prove the following finite-dimensional geometric version of Hahn–
Banach theorem: every non-empty closed convex set ⌦ ⇢ Rn and a point z 2
Rn \⌦ may be separated with a hyperplane. That is, there is a 2 Rn and b 2 R,
such that

a

T

z < b  a

T

x, 8x 2 ⌦.

Thus a is a normal for the said hyperplane. Hint: consider the optimality condi-
tions (2) for the projection problem (4).

Proposition 4 may in rare circumstances be utilized for algorithmic purposes
as well. Suppose that ⌦ is such that ⇡

⌦

[·] is easy to evaluate. Further assume
that it is possible to select ↵ > 0 such that the function F (x) := ⇡

⌦

[x�↵rf(x)]
is a contraction, that is, 90 < � < 1 such that 8x, y 2 ⌦ it holds that kF (x) �
F (y)k  �kx�yk. Then the Banach fixed point theorem tells us that the iteration
x

k+1 = F (x
k

) converges to the unique fixed point of F (·). By the construction
of F (·), this fixed point satisfies the necessary optimality conditions (5).

Finally, let us consider yet another equivalent characterization of optimality
over convex sets.



Definition 2 (Normal cone). For a convex set ⌦ and x̄ 2 ⌦ let us consider
the set

N

⌦

[x̄] = { q 2 Rn | qT (x� x̄)  0, 8x 2 ⌦ }, (7)

that is, a set of directions forming an angle of at least ⇡/2 with feasible directions
p = x�x̄ at x̄. Often one defines N

⌦

[x̄] = ; for x̄ 62 ⌦. N
⌦

[x̄] is called the normal
cone for ⌦ at x̄.

Exercise 4. Show that for any x̄ 2 ⌦ the set N
⌦

[x̄] is non-empty, convex, closed,
and is a cone. The latter property is defined as follows: q 2 N

⌦

[x̄] =) ↵q 2
N

⌦

[x̄], for any ↵ > 0.

Proposition 5. Consider a convex set ⌦ ⇢ Rn and a function f : Rn ! R.
Suppose that x

⇤ 2 ⌦ is a point of local minimum for f over ⌦, and further
assume that f is continuously di↵erentiable around x

⇤. Then �rf(x⇤) 2 N

⌦

[x⇤].

Proof. �rf(x⇤)T (x� x

⇤)  0, 8x 2 ⌦ by Proposition 1, case 1. ut

2 Even more special case: optimization over hyperplanes

Consider now the situation when the set ⌦ is defined by the linear equality
constraints only, i.e.

⌦ = {x 2 Rn | aT
i

x = b

i

, i 2 E }. (8)

In particular ⌦ is closed and convex, and therefore for a point x

⇤ 2 ⌦ to be
a point of local minimum for a continuously di↵erentiable function f it must
satisfy the variational inequality (2).

Let L = { p 2 Rn | p = x � x

⇤
, x 2 ⌦ } = ⌦ � x

⇤, and L̂ = { p 2 Rn |
a

T

i

p = 0 }. Owing to the linearity of the constraints, we have the inclusions
⌦ � x

⇤ ⇢ L̂ and x

⇤ + L̂ ⇢ ⌦; thus L = L̂. In particular, L is a linear subspace
of Rn. Therefore if p 2 L then also �p 2 L, and thus both rf(x⇤)T p � 0 and
rf(x⇤)T (�p) � 0. We conclude that rf(x⇤)T p = 0 for all p 2 L.

Let us now form a matrix A with rows a

T

i

, i 2 E . Then L is precisely the
nullspace of A, and we have shown that rf(x⇤) is orthogonal to all vectors in
null(A). Thus rf(x⇤) 2 null(A)? = range(AT ) (basic linear algebra results).
We have established the following characterization of points of local minimum.

Proposition 6 (First order necessary optimality conditions for linear

equality constraints). Consider a set ⌦ given by (8) and an arbitrary contin-
uously di↵erentiable function f . Then x

⇤ 2 ⌦ is a point of local minimum for f

over ⌦ only if rf(x⇤) 2 span[a
i

, i 2 E ]. That is, there is a vector of Lagrange
multipliers � 2 R|E|, where |E| is the number of equality constraints, such that

rf(x⇤) =
X

i2E
�

i

a

i

=
X

i2E
�

i

rc

i

. (9)



We will see that the characterization of the type (9) can be further gen-
eralized to include non-linear equality and inequality constraints under some
technical regularity conditions; such a generalization is known as the Karush–
Kuhn–Tucker (KKT) theorem. Equation (9) is simply a specialization of KKT
conditions for linear equality constraints, in the same way as the conditions
(4.8a)–(4.8b) in N&W is the specialization of the KKT conditions for the trust-
region subproblem with one inequality constraint kpk  �

k

.

Example 2. Using Proposition 6 we can derive DFP (or BFGS) quasi-Newton
algorithm. To simplify the notation we define C = B �B

k

and until the end of
the derivation we will omit the quasi-Newton iteration index k. Remember that
B

k

= B

T

k

. Consider an arbitrary symmetric and positive definite matrix W and
the optimization problem

minimize
C2Rn⇥n

f(C) =
1

2
trace[WCW

T

C

T ] =
1

2

nX

↵=1

[CWCW

T ]
↵↵

,

subject to g

ij

(C) = C

ij

� C

ji

= 0, i, j = 1, . . . , n,

h

i

(C) =
nX

j=1

C

ij

s

j

� ȳ

i

= 0, i = 1, . . . , n,

where ȳ

i

= y

i

�
P

n

j=1[Bk

]
ij

s

j

. Thus we have a minimization problem in n

2 op-

timization variables with n

2 + n linear equality constraints. As a result, Propo-
sition 6 applies. Let us denote the Lagrange multipliers corresponding to the
matrix symmetry constraints with ⌘

ij

, i, j = 1, . . . , n, and the ones correspond-
ing to the secant equation with µ

i

, i = 1, . . . , n. It remains to calculate the
derivatives of the objective function and the constraints with respect to B

ij

(gradients of the constraints w.r.t. optimization variables result in the vectors
a

i

in the notation of Proposition 6).



[WCW

T

C

T ]
↵�

=
nX

�,�,✏=1

W

↵�

C

��

W

✏�

C

�✏

,

1

2
trace[WCW

T

C

T ] =
1

2

nX

↵,�,�,✏=1

W

↵�

C

��

W

✏�

C

↵✏

,

@f

@C

ij

=
1

2

nX

↵,✏=1

W

↵i

W

✏j

C

↵✏

+
1

2

nX

�,�=1

W

i�

C

��

W

j�

| {z }
remember: W = W

T

=
nX

�,�=1

W

i�

C

��

W

�j

= [WCW ]
ij

,

@g

k`

@C

ij

=

8
><

>:

1, if (i, j) = (k, `),

�1, if (i, j) = (`, k),

0, otherwise,

@h

k

@C

ij

=

(
s

j

, if k = i,

0, otherwise.

Therefore,
nX

k,`=1

⌘

k`

@g

k`

@C

ij

= ⌘

ij

� ⌘

ji

,

nX

k=1

µ

k

@h

k

@C

ij

= µ

i

s

j

,

and the feasibility of C and optimality conditions (9) are expressed as

C

ij

� C

ji

= 0, i, j = 1, . . . , n,
nX

j=1

C

ij

s

j

= ȳ

i

, i = 1, . . . , n,

[WCW ]
ij

= ⌘

ij

� ⌘

ji

+ µ

i

s

j

, i, j = 1, . . . , n.

In matrix-vector notation we write:

C � C

T = 0,

Cs = ȳ,

WCW = ⌘ � ⌘

T + µs

T

,

where we have introduced a matrix ⌘ with elements ⌘

ij

and a vector µ with
elements µ

i

. Thus we end up with a system of 2n2+n linear algebraic equations
in 2n2 + n unknowns C, ⌘, µ - it can easily be solved numerically, but in this
case we can also solve it analytically with some manipulations.



Since W is positive definite (non-singular) symmetric, we can solve the last
equation for C and then transpose it:

C = W

�1(⌘ � ⌘

T + µs

T )W�1
,

C

T = W

�1(⌘T � ⌘ + sµ

T )W�1
.

Remebering that C � C

T = 0 we get

W

�1(2⌘ � 2⌘T + µs

T � sµ

T )W�1 = 0,

⌘ � ⌘

T =
1

2
[sµT � µs

T ].

We can substitute the latter equation back into the expression for C to obtain

C =
1

2
W

�1(sµT + µs

T )W�1
,

We now use the secant equation:

ȳ = Cs =
1

2
W

�1(sµT + µs

T )W�1
s,

2Wȳ = (sµT + µs

T )W�1
s,

µ(sTW�1
s) = 2Wȳ � sµ

T

W

�1
s,

µ = [2Wȳ � sµ

T

W

�1
s]/(sTW�1

s),

which gives us µ if we know µ

T

W

�1
s = s

T

W

�1
µ. To obtain the latter quantity

we proceed further:

W

�1
µ = [2ȳ �W

�1
sµ

T

W

�1
s]/(sTW�1

s),

s

T

W

�1
µ = 2sT ȳ/(sTW�1

s)� µ

T

W

�1
s,

s

T

W

�1
µ = s

T

ȳ/(sTW�1
s).

Finally, the last expression is used to obtain the final expression for µ:

µ = 2Wȳ/(sTW�1
s)� ss

T

ȳ/(sTW�1
s)2

=
2

s

T

W

�1
s

Wȳ � s

T

ȳ

(sTW�1
s)2

s

Therefore, the final expression for C is:

C =
1

2
W

�1


2

s

T

W

�1
s

sȳ

T

W � s

T

ȳ

(sTW�1
s)2

ss

T +
2

s

T

W

�1
s

Wȳs

T � s

T

ȳ

(sTW�1
s)2

ss

T

�
W

�1

=
1

s

T

W

�1
s

W

�1
sȳ

T +
1

s

T

W

�1
s

ȳs

T

W

�1 � s

T

ȳ

(sTW�1
s)2

W

�1
ss

T

W

�1
.

Note that this expression is valid for an arbitrary symmetric positive definite
matrix W , and it defines the only stationary point for our optimization problem.



With some more linear algebra one can show that the optimization problem is
convex (this is the only place where positive definiteness, and not just non-
singularity and symmetry of W is utilized) so that this is the globally optimal
solution to the problem thanks to Proposition 2.

We can now select W satisfying the equation Wy = s, so that W

�1
s = y.

This results in

C =
1

s

T

y

yȳ

T +
1

s

T

y

ȳy

T � s

T

ȳ

(sT y)2
yy

T

.

We now recall that B = B

k

+ C, s = s

k

, y = y

k

, ȳ = y

k

�B

k

s

k

, BT

k

= B

k

:

B = B

k

+
1

s

T

k

y

k

y

k

[y
k

�B

k

s

k

]T +
1

s

T

k

y

k

[y
k

�B

k

s

k

]yT � s

T

k

[y
k

�B

k

s

k

]

(sT
k

y

k

)2
y

k

y

T

k

= B

k

+
1

s

T

k

y

k

y

k

y

T

k

� 1

s

T

k

y

k

y

k

s

T

k

B

k

� 1

s

T

k

y

k

B

k

s

k

y

T

k

+
s

T

k

B

k

s

k

(sT
k

y

k

)2
y

k

y

T

k

=


I � 1

s

T

k

y

k

y

k

s

T

k

�
B

k


I � 1

s

T

k

y

k

s

k

y

T

k

�
+

1

s

T

k

y

k

y

k

y

T

k

,

which is precisely formula (6.13) for DFP Hessian update in N&W.



Representation theorem for polyhedral sets
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Consider the following linear programming problem in the standard form:

minimize

x2Rn
c

T

x,

subject to Ax = b,

x � 0,

(1)

where A 2 Rm⇥n

, c 2 RN

, b 2 Rm

. The existence of solutions for a feasible and

bounded problem (1) relies upon the representation of the feasible set ⌦ = {x 2
Rn | Ax = b, x � 0 } as a sum ⌦ = P + C, P is a convex, closed, and bounded

set and C is a closed convex cone.

Before we begin, we reformulate ⌦ in terms of inequalities only:

⌦ = {x 2 Rn | ˜

Ax  ˜

b }, (2)

where

˜

A =

0

@
A

�A

�I

1

A
,

˜

b =

0

@
b

�b

0

1

A
. (3)

Note that the matrix

˜

A 2 R(2m+n)⇥n

always has rank n due to the presence of

the identity matrix in the last block-row. The representation theorem applies to

all matrices

˜

A 2 R`⇥n

with rank n (full column rank in particular ` � n), not

only matrices of the form (3).

For every x 2 ⌦ we will write

=

A

x

and

=

b

x

to denote those rows of

˜

A and the

corresponding components of

˜

b, where the inequalities are active (binding) at x.

The rest of the rows of

˜

A/components of

˜

b will be denoted with

<

A

x

and

<

b

x

. Thus

=

A

x

x =

=

b

x

and

<

A

x

x <

<

b

x

.

Consider all points v

i

2 ⌦ such that rank

=

A

vi = n; thus v

i

=

=

A

�1
vi

=

b

vi . Note

that the number of such points is not larger than the number of ways of selecting

n rows out of ` possibilities, that is `!/(n!(`� n)!), and in principle could be 0.

For a given

˜

A and

˜

b we will denote this number with N . Let

P =

(
NX

i=1

�

i

v

i

| �
i

� 0,

NX

i=1

�

i

= 1

)
,

C = { d 2 Rn | ˜

Ad  0 }.

(4)

? Based on Section 3.2.3 in “Introduction to continuous optimization” by N.
Andréasson, AE, M. Patriksson, E. Gustavsson, M. Önnheim: Studentlitteratur
(2013), 2nd ed.



2 Anton Evgrafov

Theorem 1 (Representation theorem). Consider a matrix

˜

A 2 R`⇥n

and a

vector

˜

b 2 R`

defining the set (2), and the sets P and C defined in (4). Suppose

that rank

˜

A = n. If P is non-empty then ⌦ = P + C.

Proof. The inclusion P +C ⇢ ⌦ is easy to verify. The other inclusion is proved

is by induction in rank

=

A

x

, x 2 ⌦.

First, consider the points in x 2 ⌦ with rank

=

A

x

= n. These are precisely the

points v

i

defining the non-empty set P . Thus x = v

i

+ 0, for some i = 1, . . . , N .

Note that 0 2 C, thus x 2 P + C.

Now assume that the representation holds for all x 2 ⌦ such that k 
rank

=

A

x

 n. We will show that the representation holds also for points x 2 ⌦

with rank

=

A

x

= k � 1.

Let x 2 ⌦ be such a point. Since rank

=

A

x

< n there is 0 6= z 2 null

=

A

x

.

Consider a perturbed point x+�z, � 2 R. Since
<

A

x

x <

<

b

x

and

=

A

x

z = 0, it holds

that x+ �z 2 ⌦ for all small �.

Let �

+
= sup{� 2 R : x+ �z 2 ⌦ } and �

�
= sup{� 2 R : x� �z 2 ⌦ }. If

�

+
= +1 then

˜

Az = lim

�!+1
�

�1
˜

A[x+ �z]  lim

�!+1
�

�1
˜

b = 0.

and therefore z 2 C. Similarly, if �

�
= +1 then �z 2 C.

Case 1 : Suppose that �

�
= �

+
= +1; then 0 6= z 2 C \ [�C] = null

˜

A,

which contradicts the assumption rank

˜

A = n.

Case 2 : Suppose �

+
< 1 but �

�
= +1. Consider the point x

+
= x+ �

+
z.

Then x

+ 2 ⌦ since ⌦ is closed. We claim that rank

=

A

x

+ � k. Indeed,

=

A

x

is a

submatrix of

=

A

x

+ (recall,

=

A

x

z = 0) and thus rank

=

A

x

+ � k�1. If rank

=

A

x

+ = k�1

then the additional rows in

=

A

x

+
(in relation to

=

A

x

) may be expressed as linear

combinations of rows in

=

A

x

. Therefore, z 2 null

=

A

x

+
and x

+
+ �z 2 ⌦, for all

small �. This contradicts the selection of �

+
, which was such that x + �z 62 ⌦,

� > �

+
. It remains to utilize the induction hypothesis for x

+
, that is x

+
=

x + �z 2 P + C, and as a result x 2 P + (C + �

+
(�z)) = P + C, since in this

case �z 2 C.

Case 3 : Suppose �

+
= +1 but �

�
< 1. This case is completely symmetric

with Case 2.

Case 4 : Suppose that �

+
< 1 and �

�
< 1. In this case the induction

hypothesis applies to both x

+
and x

�
. Therefore

x =

�

+

�

+
+ �

�x

�
+

�

�

�

+
+ �

�x

+ 2 �

+

�

+
+ �

� (P +C)+

�

�

�

+
+ �

� (P +C) ⇢ P +C,

where the last inclusion is owing to the convexity of P , C. ut

Proposition 1 (Existence of extreme poitns; see Theorem 13.2 in N&W).

Suppose that ⌦ given by (2) is non-empty and rank

˜

A = n. Then the set P de-

fined in (4) is non-empty.



Representation theorem for polyhedral sets 3

Proof. Take any x 2 ⌦ 6= ;. If rank
=

A

x

= n we are done; otherwise we proceed as

in the proof of Theorem 1 and define �

+
, �

�
. If �

+
< 1 we then go to the point

x

+
; otherwise �

�
< 1 and then we go to the point x

�
. In any case, rank

=

A

x

+
>

rank

=

A

x

or rank

=

A

x

�
> rank

=

A

x

. Repeating this procedure, we eventually reach

a point x 2 ⌦ where rank

=

A

x

= n. ut







0 Preface

These lecture notes contain additional material for the optimization course. Section 1 gives
a short introduction to variational calculus. A more detailed introduction to variational
calculus and optimal control of ordinary di↵erential equations will be given in a half-course
this autumn at NTNU.

Section 2 describes some basic facts of optimal control of partial di↵erential equations,
where the PDE is first discretised by a finite di↵erence or finite element approximation.
These kind of problems will be discussed in detail in a new advanced course in optimization
starting in January 2015.

Dietmar Hömberg
NTNU Trondheim and Technische Universität Berlin
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1 Introduction to variational calculus

1.1 Examples, Introduction

Example 1.1 Brachistochrone curve (Johann Bernoulli, 1696)
Find the fastet path on which a point-like body moves from point A to point B under the in-
fluence of gravitation without friction. For convenience, take A as the origin of the coordi-

nate system.

x

y

A

B

a

b

Path is described by the curve

~r(X) =

✓

x

y(x)

◆

.

Arc length from x = 0 to x = a is given as

L = s(a) =

Z

a

0

|~r(x)|dx =

Z

a

0

p

1 + (y0)2dx .

For later use we note

ds

dx

=
p

1 + [y0(x)]2 . (1)

Enery conservation yield an expression for the velocity

1

2
mv

2 = m · gh = m · gy

hence v =
p
2gy.

On the other hand v =
ds

dt

, where s(t) is the arc length. Then we obtain

dt

ds

=
1

v

. (2)

The run-time of a mass point can be computed from

T =

Z

T

0

dt

(2)
=

Z

L

0

1

v

ds =

Z

L

0

1
p

2gy(t(s))
ds =

Z

a

0

s

1 + y

0(x)2

2gy(x)
dx .

Here the last manipulation has been done with the substitution x = t(s) utilising (1).
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Hence, the run-time is given as

T (y) =

Z

a

0

s

1 + y

0(x)2

2gy(x)
dx , (3)

and we seek a function y, which is at least continuously di↵erentiable and satisfies the
boundary conditions

y(0) = 0 , y(a) = b

such that a minimal run-time is attained.

For a more rigorous formulation of the problem we recall the definition of the R- vector
space

V = {f : [0, a] ! R
�

�

�

f is twice cont. di↵erentiable} = C

2[0, a] .

To include the boundary conditions we introduce the subset

D = {f 2 C

2[0, a]
�

�

�

f(0) = 0 , f(a) = b} .

Definition 1.1 Let V be an R-vector space and D ⇢ V . A mapping I : D ! R, which
assigns to each vector (or function) f 2 D a real value I(f), is called functional.

In the case of the Brachistochrone curve, T (y) is the fuctional assigning to a given curve
y 2 D the run-timeT (y) 2 R (or more precisely R+).

Example 1.2 (Functionals)

1. V = Rn, I : V ! R, I(v) = |v|

2. V vector space of real-valued polynomials p, I(p) = degree of p

3. point evaluation
V vector space of all functions f : R ! R, ↵ 2 R fixed,

I : V ! R , I(f) = f(↵)

4. V vector space of all continuous functions f : [a, b] ! R, p � 1 fixed,

I : V ! R , I(f) =

✓

Z

b

0

|f(x)|pdx
◆

1

p

is the so-called p-norm. For p = 1 one obtains

I : V ! R , I(f) = max
x2[a,b]

|f(x)| .

3



5. arc length V = C

1[a, b],

I : V ! R , I(f) =

Z

b

0

p

1 + f

0(x)2dx .

In the following we always assume V to be a vector space of functions. Let I be a functional
and D ⇢ V , then we consider the variational problem

(P) min
f2D

I(f) .

Note that problem (P) not necessarily has a solution. Weierstraß has shown in 1870 that
problem (P) in the case of

I(f) =

Z 1

�1

(xf 0(x))2dx

with D =
n

f 2 C

1[�1, 1]
�

�

�

f(�1) = 0 , f(1) = 1
o

has no solution.

Mathematically, this problem could be solved later by D. Hilbert by introducing a new
class of function spaces. Here, we only focus on techniques that allow to compute a solution
to the variational problem if it exists. To this end we use the method of Gateaux variations,
going back to L. Euler. To this end we assume y

⇤ to be a solution to our problem (P),
then we take a direction v 2 V , such that

y

"

:= y

⇤ + "v 2 D

for all " 2]� "0, "0[, i.e. in a neighbourhood of 0. Then, the real-valued function

h : R ! R , h(") = I(y⇤ + "v)

exhibits a local minimum in " = 0. If h is di↵erentiable, there holds

0 =
d

d"

h(") = lim
"!0

1

"

h

I(y⇤ + "h)� I(y⇤)
i

.

Definition 1.2 For a functional I : D ⇢ V ! R, y 2 D and v 2 V with y + "v 2 D for
all " 2]� "0, "0[,

�I(y; v) := lim
"!0

1

"

h

I(y + "v)� I(y)
i

=
d

d"

I(y + "v)
�

�

�

"=0

is called first variation oder Gateaux variation of I at y in direction v, if this limit exists.

Example 1.3

1. Directional derivative in Rn. V = Rn, I : Rn ! R

�I(y; v) = @

v

I(y) = grad I · v

4



2. V = C([a, b], I(f) =

Z

b

0

f

2
dx,

then there holds for g 2 V

�I(f ; g) =
d

d"

Z

b

a

(f + "g)2dx
�

�

�

"=0
=

d

d"

Z

b

a

(f 2 + 2"fg + "g

2)dx
�

�

�

"=0

=
d

d"

✓

Z

b

a

f

2
dx+ 2"

Z

b

a

fg dx+ "

2

Z

b

a

g

2
dx

◆

�

�

�

�

"=0

= 2

Z

b

a

f(x)g(x)dx .

The above considerations show that we obtain the following condition for the solution of
our variational problem:

Theorem 1.1 Let y⇤ be a solution of (P) and v 2 V an admissible direction, i.e., there
exists "0 > 0, such that v⇤ + "v 2 D for all " 2 (�"0, "0), then there holds

�I(y⇤; v) = 0

if the Gateaux variation exists.

Remark:

Theorem 1.1 only provides a necessary optimality condition, hence one has to check case
by case, if the obtained function indeed is the desired minimum.

1.2 The Euler-Lagrange di↵erential equation

Now we consider the following typical problem:

Let (x0, y0) and (x1, y2) be two points in R2 and

D =
n

y 2 C

2[x0, x1]
�

�

�

y(x0) = y1 , y(x1) = y1

o

.

Moreover, we assume that F (x, y, y0) is continuously di↵erentiable in all arguments and
introduce the problem

(P) min
y2D

I(y) :=

Z

x

1

x

0

F (x, y(x), y0(x))dx ...

x

y

x x

y

y

2

1

1 2

5



An important tool for our considerations will be the following fundamental lemma of the
calculus of variations:

Lemma 1.1 If for f : [a, b] ! R there holds

Z

b

a

f(x)g(x)dx = 0 for all g 2 C

2[a, b] with g(a) = g(b) = 0

then f = 0.

Proof: Assume f(x0) 6= 0 for an x0, for example, let f(x0) > 0. f is continuous, hence
there exists "0 > 0, such that f(x) > 0 for all x 2]x0 � "0, x0 + "0[. Let g be a function
satisfying g(x) > 0 for all x 2]x0 � "0, x0 + "0[ and g(x) = 0 for |x� x0| � "0, then

Z

b

a

f(x)g(x)dx =

Z

x

0

+"

x

0

�"

f(x)g(x)dx > 0

contradicting the precondition.

The solution of the variational problem (P) can be characterised as the solution to an
ordinary di↵erential equation:

Theorem 1.2 Each solution y

⇤ to (P) necessarily solves the Euler-Langrange equation
to problem (P),

@F

@y

(x, y, y0)� d

dx

@F

@y

0 (x, y, y
0) = 0

Proof: Let g 2 C

2[x0, x1] mit g(x0) = g(x1) = 0, then

y

"

(x) = y

⇤(x) + "g(x) 2 D

for all " > 0 su�ciently small, i.e., y
"

is admissible. moreover, we have

y

0
"

(x) = y

0(x) + "g

0(x)

In view of the assumptions on F , the Gateaux variation exists and with Theorem 1.1, we
can infer

0 = @I(y⇤; g) =
d

d"

Z

x

1

x

0

F (x, y
s

(x), y0
"

(x))dx
�

�

�

"=0

=

Z

x

1

x

0

F

y

(x, y⇤, y⇤
0
g(x)dx+

Z

x

1

x

0

F

y

0(x, y⇤, y⇤
0
)g0(x)dx .

Integration by parts in the second summand yields
Z

x

1

x

0

F

y

0(x, y⇤), y⇤
0
g

0(x)dx = F

y

0(x, y⇤, y⇤
0
)g(x)

�

�

�

x

1

x

0

| {z }

=0

�
Z

x

1

x

0

d

dx

F

y

0(x, y⇤, y⇤
0
g(x)dx .
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All in all, we obtain
Z

x

1

x

0



F

y

(x, y⇤, y⇤
0
)� d

dx

F

y

0(x, y⇤, y⇤
0
)

�

g(x)dx = 0

for all g(x) with g(x0) = g(x1) = 0.

Applying the fundamental lemma concludes the proof.

Please note: The second term in the Euler-Lagrange equation written down explicitly is

d

dx

F

y

0(x, y, y0) = F

y

0
x

+ F

y

0
y

y

0 + F

y

0
y

0
y

00
.

Hence, the Euler-Lagrange equation is a di↵erential equation of second order.

Example 1.4 (The shortest connection between two points in a plain is a line segment.)

Let D as before and y(x) the curve connecting these two points. Then the arc length is
given as

I(y) =

Z

x

1

x

0

p

1 + y

0(x)2dx .

To illustrate the theorem we again derive the Euler-Lagrange equation from the first va-
riation of the functional.

To this end, we consider an admissible perturbation

y

"

= y + "g , y

0
"

= y

0 + "g

0 and
d

d"

y

0
"

= g

0

and use Theorem 1.1 to obtain

0 = @I(y, g) =
d

d"

Z

x

1

x

0

p

1 + y

0
"

(x)2dx
�

�

�

"20
=

Z

x

1

x

0

y

0(x)
p

1 + y

0(x)
g

0(x)dx

=
2y0(x)

p

1 + y

0(x)
g(x)

�

�

�

x

1

x

0

�
Z

x

1

x

0

 

d

dx

y

0(x)
p

1 + y

0(x)

!

g(x)dx = 0 .

Using the variational lemma leads to

d

dx

y

0(x)
p

1 + y

0(x)
= 0 ,

a di↵erential equation of second order. We can conclude

y

0
p

1 + y

0(x)
= c .

With c < 1 we obtain y

2 = c

2 + c

2
y

02 or y

02(1� c

2) = c

2, hence

y

0 = ±
r

c

2

1� c

2
= const ,

and y = ax + b is a linear function. Now we can compute a, b from initial and end
conditions, i.e., we obtain

y = y0 + (y1 � y0)
x� x0

x1 � x0
.
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Example 1.5 (Brachistochrone curve)
According to Example 1.1 there holds

T (y) =

Z

a

0

s

1 + y

0(x)2

2gy(x)
dx .

We may neglect constant factors for optimisation, hence we define

F (y, y0) =

s

1 + y

02

y

.

Then we obtain the following Euler-Lagrange equation

0 =
@F

@y

� d

dx

@F

@y

0 =
@F

@y

� F

y

0
y

y

0(x)� F

y

0
y

0
y

00(x) .

Multiplying the equation with y

0 yields

0 = F

y

y

0 � F

y

0
y

y

02 � F

y

0
y

0
y

00
y

0 =
d

dx

(F � y

0
F

y

0) .

Hence, we can infer F � y

0
F

y

0 = const , i.e.,

s

1 + y

02

y

� y

02

y

q

1+y

02

y

=

s

1 + y

02

y

� y

02
p

y(1 + y

02)
= c .

After multiplication with
p

y(1 + y

02) we get

1 + y

02 � y

02 = c

p

y(1 + y

02).

After squaring,

y(1 + y

02) =
1

c

2

and thus y

0 =

s

1� yc

2

yc

2
.

Separation of variables gives

Z

dx =

Z

s

yc

2

1� yc

2
dy.

We substitute

y(t) =
1

c

2
sin2

t , i.e.,
dy

dt

=
2

c

2
sin t cos t

8



with t 2
h

0,
⇡

2

i

. Then, we obtain

Z

s

yc

2

1� yc

2
dy =

Z

s

sin2
t

1� sin2
t

2

c

2
sin t cos dt =

2

c

2

Z

sin2
t dt

(⇤)
=

2

c

2

Z

✓

1

2
� 1

2
cos(2t)

!

dt =
1

c

2
t� 1

2c2
sin(2t) + c̃

=
1

2c2
(2z � sin(2t)) + c̃ = x(t) .

Since x(0) = 0 we have c̃ = 0. For y we obtain

y(t) =
1

c

2
sin2

t

(⇤)
=

1

2c2
(1� cos(2t)) .

Altogether, we obtain the solution curve

(x(t), y(t)) =
1

2c2

⇣

2t� sin(2t), 1� cos(2t)
�

,

i.e., a cycloid. In our computations we have used the addition formula for cosine, which
implies

cos(2t) = cos2 t� sin2
t = 1� 2 sin2

t,

and thus

(⇤) sin2
t =

1

2
� 1

2
cos(2t) .

1.3 Natural boundary conditions

Example 1.6 (tension-compression bar) 394,501

x = 0 x = l

Consider a bar ⌦ of length l with constant cross section A. Let u(x) denote the displace-
ment in x-direction. The bar is clamped on the left, i.e.,

u(0) = 0 .

On the right-hand side it is stress free. We recall Hooke’s law

� = E" = Eu

x

,

where " is the strain and E the modulus of elasticity. The stable equilibrium of the bar
corresponds to its energetic minimum. We define the overall elastic potential of the bar as

⇧(u) = W

f

(u)�W

a

(u) .
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Here, the strain energy is given as

W

f

(u) =
1

2

Z

⌦

�"dV =
1

2
A

Z

l

0

Eu

2
x

dx

and the potential energy of applied forces is defined by

W

a

(u) =

Z

⌦

pudV = A

Z

l

0

p(x)u(x) dx ,

with a given force per length p(x).

Let D = {u 2 C

2[0, l] with u(0) = 0} and h 2 D then u

" = u+ "h 2 D for all " > 0. We
search for a displacement function u

⇤ as the solution to

(P) min
u2D

⇧(u)

According to Theorem 1.1 the necessary condition �⇧(u⇤;h) = 0 for all admissible h holds,
i.e.,

0 = �⇧(u, h) =
d

d"

✓

A

2

Z

l

0

Eu

"

2

x

dx� A

Z

l

0

pu

"

dx

◆

�

�

�

�

�

"=0

=
d

d"

✓

A

2

Z

l

0

E(u
x

+ "h

x

)2dx� A

Z

l

0

p(u+ "h)dx

◆

�

�

�

�

�

"=0

= A

✓

Z

l

0

E(u
x

+ "h

x

)h
x

dx� A

Z

l

0

ph dx

◆

�

�

�

�

�

"=0

= A

Z

l

0

Eu

x

h

x

dx� A

Z

l

0

ph dx

integration by parts

= A

Z

l

0

(�(Eu

x

)
x

� p)h(x)dx+ AEu

x

h

�

�

�

l

0
.

Now, we demand in addition that h also vanishes at x = l, in other words h(l) = h(0) = 0.
Then

Z

l

0

�

� (Eu

x

)
x

� p

�

h dx = 0 (4)

for all h 2 C

2[0, l] with h(0) = h(l) = 0 and with Lemma 5.1 we can infer

�(Eu

x

)
x

= p , x 2 (0, l).

This also implies

AEu

x

h

�

�

�

l

0
= AEu

x

(l)h(l) = 0 (5)

for all h 2 D.
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Now we choose h(x) = 1
l

x, then h 2 C

2[0, l], h(0) = 0 und h(l) = 1, and thus h 2 D. We
obtain AEu

x

(l) = 0 and hence

u

x

(l) = 0 . (6)

Remark: We have recovered boundary condition (6) from the variational formulation.
Such a condition is called a natural boundary condition or Neumann condition. The
condition u(0) = 0 has to be prescribed in the variational space D, hence it is called an
essential or a Dirichlet boundary condition.

All in all, we obtain the boundary value problem

� d

dx

✓

E

du

dx

◆

= p(x) in (0, l) (7a)

u(0) = 0 (7b)

u

x

(l) = 0 . (7c)

Applying Hooke’s law (7c), we see that

�(u)
�

�

�

x=l

= Eu

x

�

�

�

x=l

= 0,

hence indeed the right-hand side of the bar is stress free.
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