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1 Reading

Chapter 1 in Nocedal and Wright, “Numerical optimization.”

2 What is optimization?

Optimum (the neuter form of optimus) originates from the Latin, and translates
to English as “the best.” Therefore, “to optimize something (system/process/acitivity
etc)” is normally understood as “to bring something to its best possible state.”
There are three important terms in this interpretation, which need further clar-
ification:

– “To bring”: a modeller needs to identify the parameters of the system (pro-
cess, activity), which can be varied. These may be discrete or real-valued
parameters, or even more general objects such as functions, geometric sur-
faces, or similar. In this course we will mostly deal with parameters assuming
real values. It will be convenient to collect all such parameters in a vector
x ∈ Rn of optimization or decision variables.

– “The best”: in order to compare the states corresponding to various param-
eter values we need to introduce a total ordering on the set of parameters.
Typically this is done by employing a real-valued objective or cost function
x 7→ f(x) ∈ R (sometimes x 7→ f(x) ∈ R∪{+∞}), with the convention that
the “better” values of the parameters correspond to the smaller values of f .
Thus to choose the best parameter values we need to find x corresponding
to the smallest value of f .

– “Possible”: not all combinations or values of the parameters are valid. Lim-
ited availability of physical resources (time, money, raw materials, labour,
etc) or demand requirements may introduce upper and lower limits on the
parameters. There might be technical/logical restrictions on the values or the
relationships between various parameters. We will abstractly collect all the
admissible values of the parameters for the problem under the consideration
into a feasible set Ω.
In most applications, the set Ω is defined as a solution set to a system of
inequalities and equalities, which results from the list of all the restrictions
on the parameters:

Ω = {x ∈ Rn | gi(x) ≥ 0, i ∈ I, gj(x) = 0, j ∈ E }, (1)



and the function gi, i ∈ I and gj , j ∈ E will be referred to as the inequality
and equality constraints1. Depending on whether the constraints are present,
we classify the problem (2) as constrained or unconstrained.

To summarize, we will be concerned with solving problems of the type

minimize f(x),

subject to x ∈ Ω,
(2)

where Ω may be further described with inequality and equality constraints. One
may generalize this framework in many ways; for example, instead of parameters
in Rn we may consider other spaces with different topological and/or algebraic
structures, such as for example spaces of matrices, functions, curves and surfaces,
etc. Instead of inequality (equality) constraints of the type gi(x) ≥ 0 (gi(x) = 0)
one may instead demand g(x) ∈ K, where K is a cone2 (satisfying some tech-
nical requirements) in a suitable vector space. We will keep the problem formu-
lation (2) as it provides plenty of the room for modelling, development of the
theory, and efficient algorithms. Furthermore, this is the formulation considered
in the textbook of the course.

Please note that people often use the expression mathematical programming
interchangeably with optimization. The program refers to a “decision program”
and not a computer program, as optimization/mathematical programming has
a much longer history than computer programming.

3 What does it mean to solve the problem (2)?

One distinguishes between two most important types of solutions to (2).

Definition 1 (Global minimum). A point x∗ ∈ Ω is called the point of global
minimum, if for every x ∈ Ω we have the inequality f(x∗) ≤ f(x).

Geometrically, x∗ is a point of global minimum if the graph { (x, f(x)) |
x ∈ Ω } lies “above” the horizontal plane { (x, f(x∗)) | x ∈ Ω,α = f(x∗) } and
touches it at the point (x∗, f(x∗)) (but possibly at other points, too).

Points of global minimum may not exist even when the function is bounded
from below:

Example 1. Consider a positive function f(x) = exp(−x2). This function ap-
proaches zero arbitrarily close: for every ε > 0 it suffices to take |x| > [log(ε−1)]1/2

to get 0 < f(x) < ε. Therefore, the global minimum, if existed, must satisfy the
inequality f(x∗) < ε, for any ε > 0. However, there is no x∗ ∈ R such that
f(x∗) = 0.

1 In this course we will assume that both I and E are finite index sets.
2 A cone C in a vector space is a set, which is invariant under multiplication with

positive scalars; that is λC = C, for every λ > 0. Examples include the zero cone
{0}; the cone of vectors with non-negative components Rn+; or the cone of symmetric
positive semi-definite matrices Sn+.



Unless we have information about the global behaviour of the function over
the feasible set, global solutions, even when exist, are incredibly difficult to
recognize. Indeed, assume that an oracle provides us with a globally optimal
solution x∗ ∈ Ω, and our task is to verify her/his guess. Then, in accordance
with the definition 1, we should compare f(x∗) with the value f(x), evaluated
at every other point x ∈ Ω, which is most often practically impossible. Instead,
we will look for points, which can be characterized with the knowledge of the
function only in the vicinity of a given point. For differentiable functions such
an information will be available from the local Taylor series expansion of f and
the constraints.

Definition 2 (Local minimum). A point x∗ ∈ Ω is called the point of local
minimum, if it is a point of global minimum in the feasible set restricted to some
neighbourhood of x∗. That is, if there is ε > 0 such that for every x ∈ { y ∈ Ω |
‖y − x∗‖ < ε } we have the inequality f(x∗) ≤ f(x). If the latter inequality is
strict whenever x 6= x∗ in the vicinity of x∗, we say that x∗ is the point of strict
local minimum.

4 Very briefly: “standard tricks” in optimization
modelling

4.1 Auxiliary optimization variables

It is often convenient to introduce additional variables, which are not associated
with the parameters of the system we are trying to model. One standard type
of such auxiliary variables is a slack variable, which allows us to switch from
inequality to equality constraints (and simple bounds):

g(x) ≥ 0 ⇐⇒ g(x)− s = 0, s ≥ 0.

Note that one may, in principle, replace s with s2 and drop the restriction on
the slack variable, but most often this is not such a good idea.

Another type of auxiliary variables appears when we move the objective
function f into constraints instead:{

min
x
f(x),

s.t. x ∈ Ω,
⇐⇒

 min
(x,z)

z,

s.t. (x, z) ∈ { (x̃, z̃) ∈ Ω × R | z̃ − f(x̃) ≥ 0 },

This trick allows one to transform a problem of minimizing a piece-wise smooth
objective function f(x) = max{f1(x), f2(x), . . . , fk(x)}, where f1, . . . , fk are
smooth functions, into a problem with smooth objective and constraints:

min
(x,z)

z,

s.t. x ∈ Ω,
z − f1(x) ≥ 0,

...

z − fk(x) ≥ 0.



Similar tricks allow one to deal with minimizing a variety of non-smooth func-
tions such as ‖ · ‖1 and ‖ · ‖∞-norms of vectors (provide the details utilizing the
fact that |x| = max{x,−x}).

4.2 Soft and hard constraints

In some applications, most notably financial, certain constraints may be violated
at a cost. Such constraints are typically known as “soft” constrains (as opposed
to the “hard” constraints, which must be satisfied no matter what). We can
turn a “hard” inequality constraint g(x) ≥ 0 into a soft constraint as follows.
First, we introduce an artificial variable s ≥ 0, which will measure how much
the constraint g is violated, that is, we consider the constraints g(x) + s ≥ 0,
s ≥ 0 instead. Second, we need to add the cost of violation, say h(s)3, to the
objective function. That is, instead of f(x) we minimize f(x) + h(s).

The idea of soft constraints is also utilized in penalty methods for constrained
optimization, allowing one to transform the constrained problem into an uncon-
strained one, or the one with very simple constraints.

5 Very briefly: classification

– Unconstrained optimization refers to the situations when Ω = Rn in (2);
constrained optimization otherwise.

– Linear programming/optimization: the objective function and all the con-
straints are first order polynomials; non-linear optimization otherwise.

– Quadratic programming : the objective function is a second order polynomial
and all the constraints are first order polynomials.

– Convex programming/optimization: the objective function and the feasible
set Ω is convex; if the constraints are given explicitly, then all the inequality
constraints are concave functions and the equality constraints are affine (first
order polynomials).

– Non-smooth/non-differentiable optimization: normally refers to the situa-
tion, when the objective function f(x) (or some of the constraints, though
problems in this class are often unconstrained or involve only simple con-
straints, such as bounds on the variables) is not differentiable at least at
some points. If all the functions involved in the problem are at least once
differentiable, we deal with differentiable (sometimes smooth) optimization.

– Semi-infinite programming : the number of decision variables is finite, but
the number of constraints is infinite.

– Semi-definite programming : optimization over spaces of symmetric matrices,
restricted to be positive semi-definite.

– Calculus of variations: optimization over spaces of functions.

3 A typical example of h(s) is Ms, where M > 0 is the cost of violating the constraint
g(x) ≥ 0 “per unit of violation.”



6 Basic existence of solutions results

One of the weakest forms of continuity under which one may expect the prob-
lem (2) to admit solutions is as follows.

Definition 3 (Lower semi-continuity). Consider a function f : Ω → R ∪
{+∞} on a set Ω ⊆ Rn. We say that the function f is lower semi-continuous
(l.s.c.) on Ω, if the lower level set Ωα = {x ∈ Ω | f(x) ≤ α } is relatively closed4

in Ω for any α ∈ R.

Example 2. Lower semi-continuous functions appear naturally in the context of
so-called min-max (inf-sup) problems, where we try to find a minimum of a
function, which is defined through a maximization problem. For example, let

f(x) = sup
t∈R
{1− exp(−x2t2)}.

Then

f(x) =

{
0, if x = 0,

1, otherwise,

which is clearly discontinuous at x = 0, despite the fact that each individual
function 1 − exp(−x2t2) is continuous in (x, t). Nevertheless, the function f is
still l.s.c. on R, because for any α ∈ R we have

Ωα =


∅, α < 0,

{0}, 0 ≤ α < 1,

R, 1 ≤ α,

all of which are closed sets in R.

We now define the concept of a minimizing sequence. One can establish
the existence of solutions to the problem (2) without appealing to minimizing
sequences (as indeed we will). Nevertheless, minimizing sequences constitute an
important and often utilized concept in their own right.

Definition 4 (Minimizing sequence). Assume that Ω 6= ∅ and let f∗ =
infx∈Ω f(x).5 By the definition of the infimum, there is a sequence of numbers
{fk}∞k=1 in the set { f(x) | x ∈ Ω }, such that limk→∞ fk = f∗. By the definition
of fk, there is xk ∈ Ω such that fk = f(xk). We say that the sequence {xk}∞k=1

is a minimizing sequence for the problem (2).

4 Relative closedness in this notation means that if a sequence of points {xk}∞k=1 in
Ωα converges to a limit x∗ ∈ Ω, then x∗ ∈ Ωα. In other words, the set Ωα contains
all its limit points, which are also in Ω. Therefore closedness, relative to the whole
space Rn, coincides with the regular definition of closedness.

5 We adopt the convention that every subset of the real line has an infimum, or the
greatest lower bound, by letting the infimum of the set unbounded from below be
equal to −∞ and the infimum of the empty set be equal +∞. We apply a similar
convention to sup.



We know that the function is continuous iff the convergence of sequences
is preserved by the function, that is, xk → x∗ =⇒ f(xk) → f(x∗). One can
provide a similar characterization of lower semi-continuity as well, which will be
useful for our purposes when applied to minimizing sequences.

Proposition 1. A function f : Ω → R ∪ {+∞} is l.s.c. on Ω iff for every se-
quence {xk}∞k=1 in Ω converging to x∗ ∈ Ω it holds that f(x∗) ≤ lim infk→∞ f(xk)6

Proof. Suppose that f is l.s.c. on Ω. For the sake of contradiction assume that for
some convergent sequence {xk}∞k=1 in Ω it holds that lim infk→∞ f(xk) < f(x∗),
where Ω 3 x∗ = limk→∞ xk. In particular, we get that lim infk→∞ f(xk) < +∞
and as a result there is α ∈ R, such that lim infk→∞ f(xk) < α < f(x∗). We
will demonstrate that there there is a subsequence of xk, which belongs to Ωα,
thus showing that Ωα is not relatively closed (it does not contain one of its
limit points, namely x∗); this is our desired contradiction with the lower semi-
continuity of f . We proceed with yet another proof by contradiction. Indeed, sup-
pose that Ωα contains only finitely many elements xk, that is, there is an index N
such that for all k ≥ N it holds that xk 6∈ Ωα, or equivalently, f(xk) > α. Then
infk≥n f(xk) ≥ α for every n ≥ N and as a result also limn→∞ infk≥n f(xk) ≥ α.
This contradicts with our choice of α: lim infk→∞ f(xk) < α < f(x∗).

We now prove the implication in the opposite direction. Suppose that f is
not l.s.c. on Ω. Then there is α ∈ R such that Ωα is not relatively closed in Ω.
That is, there is a sequence {xk}∞k=1 in Ωα, with a limit x∗ ∈ Ω \ Ωα. Clearly,
we then have lim infk→∞ f(xk) ≤ lim infk→∞ α = α < f(x∗), which concludes
the proof. ut

We now establish existence of solutions to the problem (2) without requiring
any algebraic/geometric properties of the problem (such as convexity). The result
is normally attributed to Weierstrass.

Theorem 1 (Existence of solutions). Let Ω be a non-empty compact7 set
in Rn (or any other metric space, for that matter) and f : Ω → R ∪ {+∞} be
lower semi-continuous on Ω. Then the problem (2) admits at least one global
minimum.

Proof. Let {xk}∞k=1 be a minimizing sequence for the problem (2) (see Defini-
tion 4). Owing to the compactness of Ω it holds that for {xk}∞k=1 contains a
subsequence, say {x′k}∞k=1, converging to some point x∗ ∈ Ω. Utilizing the defi-
nition of the infimum, Proposition 1, the fact that {f(x′k)}∞k=1 is a subsequence
of the converging sequence {f(xk)}∞k=1, and the definition of the minimizing
sequence we obtain the following string of inequalities:

inf
x∈Ω

f(x) ≤ f(x∗) ≤ lim inf
k→∞

f(x′k) = lim
k→∞

f(x′k) = lim
k→∞

f(xk) = inf
x∈Ω

f(x),

6 Recall that for any sequence {αk}∞k=1 of real numbers, lim infk→∞ αk =
limn→∞ infk≥n αk. lim inf (finite or infinite) exists for an arbitrary sequence, as the
sequence βn = infk≥n αk is monotonically non-decreasing.

7 Recall that a subset of Rn is compact iff it is closed and bounded (Heine–Borel
Theorem). Further, from any sequence in a compact subset of a metric space we can
extract a converging subsequence, which is utilized in the proof of Theorem 1.



which implies that x∗ ∈ Ω is the point of global minimum for (2). ut

We now give an alternative proof of Theorem 1, which does not appeal to
the convergence of sequences.

Proof (Alternative proof of Theorem 1). Let f∗ = infx∈Ω f(x), and let Ωα de-
note the lower-level set of f for any real number α. Every Ωα is a closed set
owing to the lower semi-continuity of f , which is non-empty for any α > f∗

by the definition of inf. Therefore, for any finitely many numbers α1 > f∗,
α2 > f∗,. . . ,αN > f∗ it holds that

∩Ni=1Ωαi = Ωmini=1,...,N αi 6= ∅,

since mini=1,...,N αi > f∗. This is precisely the condition for the family of closed
sets {Ωα | α > f∗ } to have a finite intersection property. Owing to the com-
pactness of Ω it holds that ∩α>f∗Ωα 6= ∅. By construction, every point in
∩α>f∗Ωα = Ωf∗ is a point of global minimum for (2); in particular, f∗ > −∞
as f cannot assume the value −∞. ut

When establishing the existence of solutions to optimization problems, one
can trade the compactness of Ω for the growth of f at infinity, which guarantees
that the minimizing sequences stay bounded.

Definition 5. A function f : Ω → R ∪ {+∞} is called coercive if f(x)→ +∞
whenever ‖x‖ → +∞.

Theorem 2. Let Ω be a non-empty closed set in Rn and f : Ω → R be a coercive
lower semi-continuous function on Ω. Then the problem (2) admits at least one
global minimum.

Exercises

1. Prove Theorem 2.
2. Show that all the assumptions in Theorems 1 and 2 are essential. Indeed,

Example 1 shows that either compactness or coercivity are essential for the
existence of solutions. Demonstrate that the lower semi-continuity is also
needed by constructing an instance of the problem (2) with a not lower
semi-continuous objective function f , which does not attain its infimum on
some non-empty compact feasible set Ω.

3. Let f : Rn → R be a quadratic polynomial f(x) = 0.5xTGx + xT d, where
G ∈ Rn×n is a symmetric positive definite matrix, and d ∈ Rn is arbitrary.
Show that f is coercive on Rn. (Hint: expand x in terms of the eigenvectors
of G to estimate xTGx from below.)

4. Provide details on how one can transform the non-smooth optimization prob-
lem of minimizing the 1- or ∞-norm of a vector to a smooth minimization
problem by introducing auxiliary variables and additional constraints.



5. * Example 2 is not incidental! Indeed, consider a function f : Rn → R∪{+∞}
defined as f(x) = sup{ fs(x) | s ∈ S }, where each function fs : Rn → R is
l.s.c., and S is an arbitrary index set (possibly uncountable). Show that f is
l.s.c. on Rn.

6. Show that the function f : Ω → R is l.s.c. on Ω if and only if it satisfies
the following “ε/δ” definition of lower semi-continuity: for any x∗ in Ω and
any ε > 0 there is δ > 0 such that for any x ∈ Ω, ‖x − x∗‖ < δ =⇒
f(x∗) < f(x) + ε. (You may use the equivalent characterization of lower
semi-continuity given by Proposition 1).


