Representation theorem for polyhedral sets^{*}

Anton Evgrafov

Department of Mathematical Sciences, NTNU anton.evgrafov@math.ntnu.no

Consider the following linear programming problem in the standard form:

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\min initial minimize} & c^T x, \\ \text{subject to} & Ax = b, \\ & x \ge 0, \end{array}$$
(1)

where $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^N$, $b \in \mathbb{R}^m$. The existence of solutions for a feasible and bounded problem (1) relies upon the representation of the feasible set $\Omega = \{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$ as a sum $\Omega = P + C$, P is a convex, closed, and bounded set and C is a closed convex cone.

Before we begin, we reformulate \varOmega in terms of inequalities only:

$$\Omega = \{ x \in \mathbb{R}^n \mid Ax \le b \},\tag{2}$$

where

$$\tilde{A} = \begin{pmatrix} A \\ -A \\ -I \end{pmatrix}, \qquad \tilde{b} = \begin{pmatrix} b \\ -b \\ 0 \end{pmatrix}.$$
(3)

Note that the matrix $\tilde{A} \in \mathbb{R}^{(2m+n) \times n}$ always has rank *n* due to the presence of the identity matrix in the last block-row. The representation theorem applies to all matrices $\tilde{A} \in \mathbb{R}^{\ell \times n}$ with rank *n* (full column rank in particular $\ell \geq n$), not only matrices of the form (3).

For every $x \in \Omega$ we will write \overline{A}_x and \overline{b}_x to denote those rows of \widetilde{A} and the corresponding components of \widetilde{b} , where the inequalities are active (binding) at x. The rest of the rows of \widetilde{A} /components of \widetilde{b} will be denoted with \overline{A}_x and \overline{b}_x . Thus $\overline{A}_x x = \overline{b}_x$ and $\overline{A}_x x < \overline{b}_x$.

Consider all points $v_i \in \Omega$ such that rank $\overline{A}_{v_i} = n$; thus $v_i = \overline{A}_{v_i}^{-1}\overline{b}_{v_i}$. Note that the number of such points is not larger than the number of ways of selecting n rows out of ℓ possibilities, that is $\ell!/(n!(\ell-n)!)$, and in principle could be 0. For a given \tilde{A} and \tilde{b} we will denote this number with N. Let

$$P = \left\{ \sum_{i=1}^{N} \lambda_i v_i \mid \lambda_i \ge 0, \sum_{i=1}^{N} \lambda_i = 1 \right\},$$

$$C = \left\{ d \in \mathbb{R}^n \mid \tilde{A}d \le 0 \right\}.$$
(4)

^{*} Based on Section 3.2.3 in "Introduction to continuous optimization" by N. Andréasson, AE, M. Patriksson, E. Gustavsson, M. Önnheim: Studentlitteratur (2013), 2nd ed.

2 Anton Evgrafov

Theorem 1 (Representation theorem). Consider a matrix $\tilde{A} \in \mathbb{R}^{\ell \times n}$ and a vector $\tilde{b} \in \mathbb{R}^{\ell}$ defining the set (2), and the sets P and C defined in (4). Suppose that rank $\tilde{A} = n$. If P is non-empty then $\Omega = P + C$.

Proof. The inclusion $P + C \subset \Omega$ is easy to verify. The other inclusion is proved is by induction in rank \overline{A}_x , $x \in \Omega$.

First, consider the points in $x \in \Omega$ with rank $\overline{A}_x = n$. These are precisely the points v_i defining the non-empty set P. Thus $x = v_i + 0$, for some $i = 1, \ldots, N$. Note that $0 \in C$, thus $x \in P + C$.

Now assume that the representation holds for all $x \in \Omega$ such that $k \leq \operatorname{rank} \overline{A}_x \leq n$. We will show that the representation holds also for points $x \in \Omega$ with rank $\overline{A}_x = k - 1$.

Let $x \in \Omega$ be such a point. Since rank $\overline{A}_x < n$ there is $0 \neq z \in \text{null } \overline{A}_x$. Consider a perturbed point $x + \lambda z$, $\lambda \in \mathbb{R}$. Since $\overline{A}_x x < \overline{b}_x$ and $\overline{A}_x z = 0$, it holds that $x + \lambda z \in \Omega$ for all small λ .

Let $\lambda^+ = \sup\{\lambda \in \mathbb{R} : x + \lambda z \in \Omega\}$ and $\lambda^- = \sup\{\lambda \in \mathbb{R} : x - \lambda z \in \Omega\}$. If $\lambda^+ = +\infty$ then

$$\tilde{A}z = \lim_{\lambda \to +\infty} \lambda^{-1} \tilde{A}[x + \lambda z] \le \lim_{\lambda \to +\infty} \lambda^{-1} \tilde{b} = 0.$$

and therefore $z \in C$. Similarly, if $\lambda^- = +\infty$ then $-z \in C$.

Case 1: Suppose that $\lambda^- = \lambda^+ = +\infty$; then $0 \neq z \in C \cap [-C] = \operatorname{null} \tilde{A}$, which contradicts the assumption rank $\tilde{A} = n$.

Case 2: Suppose $\lambda^+ < \infty$ but $\lambda^- = +\infty$. Consider the point $x^+ = x + \lambda^+ z$. Then $x^+ \in \Omega$ since Ω is closed. We claim that rank $\overline{A}_{x^+} \ge k$. Indeed, \overline{A}_x is a submatrix of \overline{A}_{x^+} (recall, $\overline{A}_x z = 0$) and thus rank $\overline{A}_{x^+} \ge k-1$. If rank $\overline{A}_{x^+} = k-1$ then the additional rows in \overline{A}_{x^+} (in relation to \overline{A}_x) may be expressed as linear combinations of rows in \overline{A}_x . Therefore, $z \in \text{null } \overline{A}_{x^+}$ and $x^+ + \lambda z \in \Omega$, for all small λ . This contradicts the selection of λ^+ , which was such that $x + \lambda z \notin \Omega$, $\lambda > \lambda^+$. It remains to utilize the induction hypothesis for x^+ , that is $x^+ = x + \lambda z \in P + C$, and as a result $x \in P + (C + \lambda^+(-z)) = P + C$, since in this case $-z \in C$.

Case 3: Suppose $\lambda^+ = +\infty$ but $\lambda^- < \infty$. This case is completely symmetric with Case 2.

Case 4: Suppose that $\lambda^+ < \infty$ and $\lambda^- < \infty$. In this case the induction hypothesis applies to both x^+ and x^- . Therefore

$$x = \frac{\lambda^+}{\lambda^+ + \lambda^-} x^- + \frac{\lambda^-}{\lambda^+ + \lambda^-} x^+ \in \frac{\lambda^+}{\lambda^+ + \lambda^-} (P + C) + \frac{\lambda^-}{\lambda^+ + \lambda^-} (P + C) \subset P + C,$$

where the last inclusion is owing to the convexity of P, C.

Proposition 1 (Existence of extreme poitns; see Theorem 13.2 in N&W). Suppose that Ω given by (2) is non-empty and rank $\tilde{A} = n$. Then the set P defined in (4) is non-empty. *Proof.* Take any $x \in \Omega \neq \emptyset$. If rank $\overline{\bar{A}}_x = n$ we are done; otherwise we proceed as in the proof of Theorem 1 and define λ^+ , λ^- . If $\lambda^+ < \infty$ we then go to the point x^+ ; otherwise $\lambda^- < \infty$ and then we go to the point x^- . In any case, rank $\overline{\bar{A}}_{x^+} >$ rank $\overline{\bar{A}}_x$ or rank $\overline{\bar{A}}_{x^-} >$ rank $\overline{\bar{A}}_x$. Repeating this procedure, we eventually reach a point $x \in \Omega$ where rank $\overline{\bar{A}}_x = n$.