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Consider the following linear programming problem in the standard form:

minimize ¢’ x,
TER™

subject to Az = b, (1)
x>0,

where A € R™*" ¢ € RV, b € R™. The existence of solutions for a feasible and
bounded problem (1) relies upon the representation of the feasible set 2 = {z €
R" | Ax = b,z >0} asasum 2 = P+ C, P is a convex, closed, and bounded
set and C' is a closed convex cone.

Before we begin, we reformulate {2 in terms of inequalities only:

Q={zeR"| Az <b}, (2)
where
) A i b
A=|-A], b=|-b]. (3)
—1I 0

Note that the matrix A € R +m)xn always has rank n due to the presence of
the identity matrix in the last block-row. The representation theorem applies to
all matrices A € R“*™ with rank n (full column rank in particular £ > n), not
only matrices of the form (3).

For every = € {2 we will write A, and b, to denote those rows of A and the
corresponding components of 5, where the inequalities are active (binding) at x.

The rest of the rows of fl/ components of b will be denoted with ;13: and l<)x Thus
= <

A,z = b, and fo < b,. B o

Consider all points v; € {2 such that rank flvi = n; thus v; = A;lgw, Note
that the number of such points is not larger than the number of ways of selecting
n rows out of ¢ possibilities, that is £!/(n!(¢ — n)!), and in principle could be 0.
For a given A and b we will denote this number with N. Let

N N
P:{Z)\ivi|)\i207z/\i:1};
i=1 i=1 (4)
C={deR"|Ad<0}.
* Based on Section 3.2.3 in “Introduction to continuous optimization” by N.

Andréasson, AE, M. Patriksson, E. Gustavsson, M. Onnheim: Studentlitteratur
(2013), 2nd ed.
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Theorem 1 (Representation theorem). Consider a matriz AeR”™ and a
vector b € RY defining the set (2), and the sets P and C defined in (4). Suppose
that rank A = n. If P is non-empty then 2 = P + C.

Proof. The inclusion P+ C C (2 is easy to verify. The other inclusion is proved
is by induction in rank A, = € £2. B

First, consider the points in = € §2 with rank A, = n. These are precisely the
points v; defining the non-empty set P. Thus = = v; + 0, for some i =1,..., N.
Note that 0 € C, thus z € P+ C.

Now assume that the representation holds for all z € (2 such that £ <
rank A, < n. We will show that the representation holds also for points x € 2
with rank A, = k — 1. B -

Let z € £2 be such a point. Since rank A, < n there is 0 # z € null 4,.
Consider a perturbed point x + Az, A € R. Since jmx < l<)lc and A,z = 0, it holds
that x + Az € (2 for all small \.

Let AT =sup{ A eR:z+Xze€N}and A\ =sup{\€R:z— Az 2}. If
At = 400 then

Az= lim A Az +X2] < lim A7'b=0.

A——4o00 T Ao+t

and therefore z € C'. Similarly, if A~ = +o00 then —z € C.

Case 1: Suppose that A= = AT = +oo; then 0 # 2z € C N [-C] = null 4,
which contradicts the assumption rank A=n.

Case 2: Suppose AT < 0o but A~ = +oc. Consider the point 2+ = x + AT 2.
Then xF € 2 since §2 is closed. We claim that rank A,+ > k. Indeed, A, is a
submatrix of A, (recall, A,z = 0) and thus rank A+ > k—1. Ifrank A+ = k—1
then the additional rows in A,+ (in relation to A,) may be expressed as linear
combinations of rows in A,. Therefore, z € null A,+ and 2 + Az € £2, for all
small X. This contradicts the selection of A, which was such that x + Az & (2,
A > AT, It remains to utilize the induction hypothesis for =T, that is zt =
r+ X2 €P+C,and asaresult z € P+ (C + A" (—2)) = P+ C, since in this
case —z € C.

Case 3: Suppose AT = 400 but A\~ < oo. This case is completely symmetric
with Case 2.

Case 4: Suppose that AT < oo and A\~ < oo. In this case the induction
hypothesis applies to both T and x~. Therefore

b N N e N iy (Pro)cPiC
At A AT+ A AT+ A~ AT+ A ’
where the last inclusion is owing to the convexity of P, C. a

Proposition 1 (Existence of extreme poitns; see Theorem 13.2 in N&W).
Suppose that 2 given by (2) is non-empty and rank A = n. Then the set P de-
fined in (4) is non-empty.
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Proof. Take any x € 2 # (. If rank A, = n we are done; otherwise we proceed as
in the proof of Theorem 1 and define A*, A™. If AT < oo we then go to the point
2T otherwise A~ < 0o and then we go to the point z™. In any case, rank A+ >
rank A, or rank A, > rank A,. Repeating this procedure, we eventually reach
a point x € 2 where rank A, = n. a



