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Consider the following linear programming problem in the standard form:

minimize
x∈Rn

cTx,

subject to Ax = b,

x ≥ 0,

(1)

where A ∈ Rm×n, c ∈ RN , b ∈ Rm. The existence of solutions for a feasible and
bounded problem (1) relies upon the representation of the feasible set Ω = {x ∈
Rn | Ax = b, x ≥ 0 } as a sum Ω = P + C, P is a convex, closed, and bounded
set and C is a closed convex cone.

Before we begin, we reformulate Ω in terms of inequalities only:

Ω = {x ∈ Rn | Ãx ≤ b̃ }, (2)

where

Ã =

 A
−A
−I

 , b̃ =

 b
−b
0

 . (3)

Note that the matrix Ã ∈ R(2m+n)×n always has rank n due to the presence of
the identity matrix in the last block-row. The representation theorem applies to
all matrices Ã ∈ R`×n with rank n (full column rank in particular ` ≥ n), not
only matrices of the form (3).

For every x ∈ Ω we will write
=

Ax and
=

bx to denote those rows of Ã and the
corresponding components of b̃, where the inequalities are active (binding) at x.

The rest of the rows of Ã/components of b̃ will be denoted with
<

Ax and
<

bx. Thus
=

Axx =
=

bx and
<

Axx <
<

bx.
Consider all points vi ∈ Ω such that rank

=

Avi = n; thus vi =
=

A−1vi
=

bvi . Note
that the number of such points is not larger than the number of ways of selecting
n rows out of ` possibilities, that is `!/(n!(`− n)!), and in principle could be 0.
For a given Ã and b̃ we will denote this number with N . Let

P =

{
N∑
i=1

λivi | λi ≥ 0,

N∑
i=1

λi = 1

}
,

C = { d ∈ Rn | Ãd ≤ 0 }.

(4)

? Based on Section 3.2.3 in “Introduction to continuous optimization” by N.
Andréasson, AE, M. Patriksson, E. Gustavsson, M. Önnheim: Studentlitteratur
(2013), 2nd ed.
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Theorem 1 (Representation theorem). Consider a matrix Ã ∈ R`×n and a
vector b̃ ∈ R` defining the set (2), and the sets P and C defined in (4). Suppose
that rank Ã = n. If P is non-empty then Ω = P + C.

Proof. The inclusion P +C ⊂ Ω is easy to verify. The other inclusion is proved
is by induction in rank

=

Ax, x ∈ Ω.

First, consider the points in x ∈ Ω with rank
=

Ax = n. These are precisely the
points vi defining the non-empty set P . Thus x = vi + 0, for some i = 1, . . . , N .
Note that 0 ∈ C, thus x ∈ P + C.

Now assume that the representation holds for all x ∈ Ω such that k ≤
rank

=

Ax ≤ n. We will show that the representation holds also for points x ∈ Ω
with rank

=

Ax = k − 1.

Let x ∈ Ω be such a point. Since rank
=

Ax < n there is 0 6= z ∈ null
=

Ax.

Consider a perturbed point x+λz, λ ∈ R. Since
<

Axx <
<

bx and
=

Axz = 0, it holds
that x+ λz ∈ Ω for all small λ.

Let λ+ = sup{λ ∈ R : x+ λz ∈ Ω } and λ− = sup{λ ∈ R : x− λz ∈ Ω }. If
λ+ = +∞ then

Ãz = lim
λ→+∞

λ−1Ã[x+ λz] ≤ lim
λ→+∞

λ−1b̃ = 0.

and therefore z ∈ C. Similarly, if λ− = +∞ then −z ∈ C.

Case 1 : Suppose that λ− = λ+ = +∞; then 0 6= z ∈ C ∩ [−C] = null Ã,
which contradicts the assumption rank Ã = n.

Case 2 : Suppose λ+ <∞ but λ− = +∞. Consider the point x+ = x+ λ+z.
Then x+ ∈ Ω since Ω is closed. We claim that rank

=

Ax+ ≥ k. Indeed,
=

Ax is a
submatrix of

=

Ax+ (recall,
=

Axz = 0) and thus rank
=

Ax+ ≥ k−1. If rank
=

Ax+ = k−1

then the additional rows in
=

Ax+ (in relation to
=

Ax) may be expressed as linear

combinations of rows in
=

Ax. Therefore, z ∈ null
=

Ax+ and x+ + λz ∈ Ω, for all
small λ. This contradicts the selection of λ+, which was such that x + λz 6∈ Ω,
λ > λ+. It remains to utilize the induction hypothesis for x+, that is x+ =
x + λz ∈ P + C, and as a result x ∈ P + (C + λ+(−z)) = P + C, since in this
case −z ∈ C.

Case 3 : Suppose λ+ = +∞ but λ− <∞. This case is completely symmetric
with Case 2.

Case 4 : Suppose that λ+ < ∞ and λ− < ∞. In this case the induction
hypothesis applies to both x+ and x−. Therefore

x =
λ+

λ+ + λ−
x−+

λ−

λ+ + λ−
x+ ∈ λ+

λ+ + λ−
(P +C) +

λ−

λ+ + λ−
(P +C) ⊂ P +C,

where the last inclusion is owing to the convexity of P , C. ut

Proposition 1 (Existence of extreme poitns; see Theorem 13.2 in N&W).
Suppose that Ω given by (2) is non-empty and rank Ã = n. Then the set P de-
fined in (4) is non-empty.
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Proof. Take any x ∈ Ω 6= ∅. If rank
=

Ax = n we are done; otherwise we proceed as
in the proof of Theorem 1 and define λ+, λ−. If λ+ <∞ we then go to the point
x+; otherwise λ− <∞ and then we go to the point x−. In any case, rank

=

Ax+ >
rank

=

Ax or rank
=

Ax− > rank
=

Ax. Repeating this procedure, we eventually reach
a point x ∈ Ω where rank

=

Ax = n. ut


