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Question 1

Let ϕ(q , f supp) denote the objective function and c(q , f supp) express the equality constraints,
that is,

ϕ(q , f supp) =
1

2

m∑
j=1

`jq
2
j

EjAj
=

1

2
q>Dq and c(q , f supp) = Bq − I suppf

supp − I extf
ext.

We form the Lagrangian

L(q , f supp,u) = ϕ(q , f supp)− u>c(q , f supp),

where u ∈ R3n denotes the vector of Lagrange multipliers, and observe readily that

∇qL(q , f supp,u) = Dq −B>u and ∇f suppL(q , f supp,u) = I>suppu .

The Karush-Kuhn-Tucker (KKT) conditions for the minimization problem (5) are then given as

∇qL(q , f supp,u) = 0 ,

∇f suppL(q , f supp,u) = 0 ,

c(q , f supp) = 0 ,

which is the same as

Dq = B>u ,

I>suppu = 0 ,

Bq = I suppf
supp + I extf

ext.

Note that the complementarity conditions are automatically satisfied, and hence omitted, since
there are no inequality constraints.

Observe that both ϕ and c are continuously differentiable. Moreover, c expresses affine
equality constraints, and so Proposition 6 in [3] implies that the KKT conditions are necessary
optimality conditions for the minimization problem (5).

In addition, the objective function is convex, which can be seen by rewriting ϕ as

ϕ(q , f supp) =
1

2
[q> f supp>]

[
D 0

0 0

][
q

f supp

]
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and noticing that D is a symmetric positive definite matrix. As the constraints are affine
functions, the feasible set is convex, and hence "The Convex KKT Theorem" in [5] gives the
sufficiency of the KKT conditions for problem (5).

Question 2

As ϕ is continuously differentiable, it is also lower semi-continuous. Furthermore, to prove the
coercivity of ϕ, note that letting ‖f supp‖ → ∞ forces ‖q‖ → ∞ in light of the equality constraint.
Hence coercivity follows from

ϕ(q , f supp) =
1

2

m∑
j=1

`jq
2
j

EjAj
≥ 1

2

m
min
j=1

`j
EjAj

‖q‖2 →∞ as ‖(q , f supp)‖ → ∞.

By assumption the feasible set Ω = {(q , f supp) ∈ Rm × R3ns : c(q , f supp) = 0} is nonempty, and
since c is an affine function, Ω is also closed.

With these properties at hand, Theorem 2 in [2] then implies the existence of at least one
solution to the minimization problem (5). Existence of a solution of the KKT conditions (4)
then follows from the necessity of the optimality conditions.

Question 3

Assume that (q1, f
supp
1 ) and (q2, f

supp
2 ) are two solutions to the minimization problem (5). By

the equivalence between the minimization problem (5) and the KKT conditions (4), we obtain
via simple subtraction that

D(q1 − q2) = B>(u1 − u2),

I>supp(u1 − u2) = 0 ,

B(q1 − q2) = I supp(f supp
1 − f supp

2 ),

where u1 and u2 are the corresponding Lagrange multipliers associated with (q1, f
supp
1 ) and

(q2, f
supp
2 ), respectively. This gives that

(q1 − q2)
>D(q1 − q2) = (q1 − q2)

>B>(u1 − u2)

= [B(q1 − q2)]
>(u1 − u2)

= [I supp(f supp
1 − f supp

2 )]>(u1 − u2)

= (f supp
1 − f supp

2 )>I>supp(u1 − u2)

= 0 ,

and so q1 − q2 = 0 since D is a symmetric positive definite matrix and hence induces a norm
‖q‖2D := q>Dq . Thus q1 = q2, and so I supp(f supp

1 − f supp
2 ) = 0 as well. But this implies that

f supp
1 − f supp

2 = 0 by the construction of I supp. Uniqueness of the minimization problem (5)
therefore follows.
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Question 4

Since the objective function ϕ(A, q , f supp) (now considered also a function of A) is contin-
uously differentiable, it is also lower semi-continuous. The feasible set may be written as
Ω = Ω1 ∩ Ω2 ∩ Ω3, with

Ω1 = {(A, q , f supp) ∈ (R ∪ {∞})m × Rm × R3ns : c(q , f supp) = 0},

Ω2 = {(A, q , f supp) ∈ (R ∪ {∞})m × Rm × R3ns : c0(A) ≥ 0}

and Ω3 = {(A, q , f supp) ∈ (R ∪ {∞})m × Rm × R3ns : cj(A) ≥ 0, j = 1, . . . , 2m},

where

c0(A) = M −
m∑
j=1

ρj`jAj and cj(A) =

 Aj −Aj if j = 1, . . . ,m;

Aj−m −Aj−m if j = m+ 1, . . . , 2m.

The set {(q , f supp) ∈ Rm × R3ns : c(q , f supp) = 0} was shown to be closed in Question 2, and
so by extension it follows readily that Ω1 is closed. Moreover, Ω2 defines a closed half-space,
while Ω3 is geometrically a closed box. Since the intersection of closed sets is closed, it follows
that Ω is closed.

To prove coercivity of ϕ, note that A is bounded below from Ω3 and bounded above via Ω2.
Hence letting ‖(A, q , f supp)‖ → ∞ forces ‖(q , f supp)‖ → ∞, and from the equality constraints
Ω1 as in Question 2, this again implies ‖q‖ → ∞. Thus

ϕ(A, q , f supp) =
1

2

m∑
j=1

`jq
2
j

EjAj
≥ 1

2

m
min
j=1

`j
EjAj

‖q‖2 →∞ as ‖(A, q , f supp)‖ → ∞.

By assumption the feasible set is nonempty, and so with all these properties combined,
Theorem 2 in [2] implies the existence of at least one optimal solution to problem (6).

We now consider that possibility that Aj = 0, with the understanding that q2j /0 =∞, if
qj 6= 0 and 0, if qj = 0. This enlarges the sets Ω2 and Ω3, but they will again be a closed
half-space and a closed box, respectively. Hence Ω remains closed. Since ‖(A, q , f supp)‖ → ∞
implies ‖q‖ → ∞, the coercivity of ϕ still holds.

To check the lower semi-continuity of ϕ, we first analyze the simpler function h(Aj , qj) = q2j /Aj .
On the part of the domain where Aj > 0, it is quickly seen that h is continuously differentiable,
and thus also lower semi-continuous. When Aj = 0, the analysis has to be more delicate. Let
{(Anj , qnj )}n be a sequence converging to (0, qj), with qj 6= 0. Since qj 6= 0, eventually we must
have qnj 6= 0 for large n. Hence, as Anj → 0, we get that

lim inf
n→∞

h(Anj , q
n
j ) =∞ = h(0, qj).

For the situation with qj = 0, we distinguish between two cases. If eventually qnj = 0 for all
large n, then limn h(Anj , q

n
j ) = 0 = h(0, 0), and we are done. For the other case, assume that

qnj 6= 0 for infinitely many n. Then readily we have lim infn h(Anj , q
n
j ) ≥ 0 = h(0, 0) by the mere

fact that h ≥ 0 on the domain.
Thus in all situations lim infn h(Anj , q

n
j ) ≥ h(Aj , qj), and so the function h is lower semi-
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continuous by Proposition 1 in [2]. Moreover, because a conical combination (nonnegative
weighted sum) of lower semi-continuous functions is lower semi-continuous via Proposition 2.13
a) in [1], it follows that ϕ is lower semi-continuous as a function of (A, q). Since ϕ does not
explicitly depend on f supp, we conclude that ϕ is lower semi-continuous. In total the above
existence result still holds for the optimal solution to problem (6).

Question 5

We form the Lagrangian

L(A, q , f supp,u) = ϕ(A, q , f supp)− ũ>c(q , f supp)−
2m∑
j=0

u3n+1+jcj(A),

where u = (uj) ∈ R3n+1+2m denotes the vector of Lagrange multipliers, and ũ ∈ R3n constitutes
the first 3n components of u . The KKT optimality conditions for problem (6) then reads

∇AL(A, q , f supp,u) = 0 ,

∇qL(A, q , f supp,u) = 0 ,

∇f suppL(A, q , f supp,u) = 0 ,

c(q , f supp) = 0 ,

cj(A) ≥ 0, j = 0, . . . , 2m,

u3n+1+j ≥ 0, j = 0, . . . , 2m,

u3n+1+jcj(A) = 0, j = 0, . . . , 2m,

which is the same as

∇AL(A, q , f supp,u) = 0 ,

Dq = B>ũ ,

I>suppũ = 0 ,

Bq = I suppf
supp + I extf

ext,
m∑
j=1

ρj`jAj ≤M,

Aj ≤ Aj ≤ Aj , j = 1, . . . ,m,

u3n+1+j ≥ 0, j = 0, . . . , 2m,

u3n+1+jcj(A) = 0, j = 0, . . . , 2m,

where some of the constraints have been written compactly and

(∇AL(A, q , f supp,u))j = −1

2

`jq
2
j

EjA2
j

+ u3n+1ρj`j − u3n+1+j + u3n+1+m+j , j = 1, . . . ,m.

The objective function and all the constraints are readily seen to be continuously differen-
tiable. Since all the constraints are affine functions, Lemma 12.7 in [6] implies that the linearized
feasible direction set at a local optimal solution equals the related tangent cone, and hence pro-
vides a sufficient constraint qualification. By Theorem 12.1 in [6] the KKT optimality conditions
are then necessary for the optimality of problem (6).

Moreover, as the constraints are affine, the feasible set is convex. Combining these two
properties, the sufficiency of the KKT conditions follows from "The Convex KKT Theorem" in
[5] if we can prove that the objective function is convex. To this end, note that the Hessian of
the function h(qj , Aj) = q2j /Aj equals
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2

Aj
−2qj
A2
j

−2qj
A2
j

2q2j
A3
j

 with eigenvalues 0 and
2

Aj

(
1 +

q2j
A2
j

)
,

and so h is convex. Since a conical combination (nonnegative weighted sum) of convex functions
is convex, it follows that ϕ is convex as a function of (A, q). Because f supp does not occur
explicitly in ϕ, the objective function ϕ(A, q , f supp) is convex on the feasible set.

Question 6

The Lagrangian reads L(A, q , f supp, û) = ψ(A, q , f supp)− û>c(q , f supp), where the objective
function ψ is defined as

ψ(A, q , f supp) = ϕ(A, q , f supp)− µ log

M − m∑
j=1

ρj`jAj

− µ m∑
j=1

log[(Aj −Aj)(Aj −Aj)],

and û is the vector of Lagrange multipliers. The KKT optimality conditions for problem (7) are

∇AL(A, q , f supp, û) = 0 ,

∇qL(A, q , f supp, û) = 0 ,

∇f suppL(A, q , f supp, û) = 0 ,

c(q , f supp) = 0 ,

which is the same as

∇AL(A, q , f supp, û) = 0 ,

Dq = B>û ,

I>suppû = 0 ,

Bq = I suppf
supp + I extf

ext,

where

(∇AL(A, q , f supp, û))j = −1

2

`jq
2
j

EjA2
j

+
µρj`j

M −
∑m

i=1 ρi`iAi
− µ

Aj −Aj
+

µ

Aj −Aj
, j = 1, . . . ,m.

A comparison with the optimality conditions for the problem (6) shows that equality con-
straint condition is exactly the same. Moreover, the equations coming from the gradient of
the Lagrangian with respect to q and f supp are almost identical for the problems (6) and (7).
And we note that the inequality constraints and their corresponding Lagrange multipliers from
problem (6) have moved into the equation involving the gradient of the Lagrangian with respect
to A for problem (7). Since

(∇AL(A, q , f supp,u))j = −1

2

`jq
2
j

EjA2
j

+ u3n+1ρj`j − u3n+1+j + u3n+1+m+j , j = 1, . . . ,m.

in problem (6) and all the Lagrange multipliers corresponding to inequality constraints are
nonnegative, reasonable approximations for these Lagrange multipliers in terms of an optimal
solution to (7) are

u3n+1 ≈
µ

M −
∑m

i=1 ρi`iAi
, u3n+1+j ≈

µ

Aj −Aj
, u3n+1+m+j ≈

µ

Aj −Aj
, j = 1, . . . ,m.

The equality constraints function c is as before continuously differentiable, and for practical
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purposes the same holds also for the objective function ψ. We note that there may be issues
about differentiability of ψ when some of the logarithmic parts assume the value ∞, that is,
some of the inequality constraints from Question 5 are active. In fact, the objective function
may spit out complex values. However, when it comes to minimizing ψ, this causes no problems
since (− log γ)→∞ as γ ↘ 0. Because c expresses affine functions, Lemma 12.7 in [6] implies
that the linearized feasible direction set at a local optimal solution equals the related tangent
cone, and hence provides a sufficient constraint qualification. By Theorem 12.1 in [6] the KKT
optimality conditions are then necessary for the optimality of problem (7).

From Question 5 we know that ϕ is convex, and (− log(·)) is a convex function since the
its second derivative is positive. Now, the arguments in the logarithmic parts of the objective
funtion are all affine (split the last sum in two by the product rule for logarithms), and hence
also convex. Since the composition of an affine function with a convex function is convex1, it
follows that all the negative logarithms are convex. Thus, as the conical combination of convex
functions is convex, we obtain that ψ is convex.

The minimization problem (7) is thus convex, with affine equality constraints, and so "The
Convex KKT Theorem" in [5] implies that the KKT conditions are sufficient optimality condi-
tions for problem (7).

Question 7

To implement a linesearch SQP algorithm for the barrier problem (7), we use Algorithm 18.3
outlined in [6] based on the exact Hessian of the Lagrangian and with `1 merit function and
backtracking (Armijo) linesearch.

The gradient of the objective function reads

∇ψ(A, q , f supp) =

 ∇Aψ(A, q , f supp)

∇qψ(A, q , f supp)

∇f suppψ(A, q , f supp)

 =

∇AL(A, q , f supp, û)

Dq

0

 ,
and we calculate the exact Hessian of the Lagrangian to be a (2m+ 3ns)× (2m+ 3ns) matrix
which takes the form

H =

 HA,A Hq ,A Hf supp,A

HA,q Hq ,q Hf supp,q

HA,f supp Hq ,f supp Hf supp,f supp

 ,
where

HA,A =

(
µρi`iρj`j

(M −
∑m

k=1 ρk`kAk)
2

)
ij

+ diag

(
`jq

2
j

EjA3
j

+
µ

(Aj −Aj)2
+

µ

(Aj −Aj)2
, j = 1, . . . ,m

)
,

HA,q = Hq ,A = diag

(
− `jqj
EjA2

j

, j = 1, . . . ,m

)
and Hq ,q = D

1We observe that (f ◦ g) (θx+ (1− θ)y) = f (θg(x) + (1− θ)g(y)) ≤ θ(f ◦ g)(x) + (1− θ)(f ◦ g)(y) for all x, y
in the domain of g and θ ∈ (0, 1) if f is convex and g is affine.
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are the only nonzero matrix blocks in H. Moreover, the constraints Jacobian equals

∇c(A, q , f supp) =
[
0 B −I supp

]
.

We have tested numerically that Assumptions 18.1 in [6] hold for some of the test cases below,
but are not sure if the constraints Jacobian has full row rank in general.

The programming environment MATLAB has been used, and we have stribed to make the al-
gorithm independent of the specific problem. For example, we introduce a vector x = (A, q , f supp),
and invoke function handles for the objective function, the equality constraints, the objective
gradient and the Hessian of the Lagrangian into the SQP algorithm. Moreover, systematic use
of global variables in the problem specific functions enables effective implementations. In par-
ticular, for calculation of the Hessian of the Lagrangian, we have exploited a fast outer product
structure when building HA,A:

1 tmp = rho .* l;

2 tmp = tmp ./ (M - dot(tmp, x(1:m)));

3

4 H_AA = mu * (tmp * tmp') ...

5 + diag(((l .* x(m+1:2*m).^2) ./ (E .* x(1:m).^3)) ...

6 + mu*((x(1:m) - A_underline).^(-2) + (A_overline - x(1:m)).^(-2)));

The search directions pk and pλ are found by solving the Newton-KKT system (18.6) in [6]
via the backslash-operator in MATLAB. Moreover, the penalty parameter µk is calculated as
a modified combination of the inequalities (18.32) and (18.36) in [6]:

1 mu_lower_lim = (dot(f_grad_x, p) + .5 * sigma * dot(p, H_x * p)) / ((1 - ...

rho) * norm(c_eq_x, 1));

2 if mu_lower_lim > 0;

3 mu = 1.1 * mu_lower_lim;

4 else

5 mu = 1.1 * max(norm(lambda, Inf), norm(lambda + p_lambda, Inf));

6 end

To be more detailed, inequality (18.36) is preferred if its righthand-side is positive, and we let
µk > max(‖λk‖∞, ‖λk + pλ‖∞) otherwise. The implementation uses σ = 1 and ρ = 0.5.

When it comes to the backtracking procedure, it is important to guarantee that the input
arguments in the `1 penalty function are valid, in the sense that the arguments in the logarithms
coming from the objective function are all strictly positive. Hence we first shorten (repeatedly
halving) the step length αk until the inequality constrants from problem (6) are satisfied with
strict inequalities. From then on the ordinary backtracking method takes over.

As a convergence criterion for the SQP algorithm, we use the norm of the righthand-side of
the Newton-KKT system (18.6) in [6], which measures the violation of both the KKT conditions
and the equality constraints.

To test the SQP algorithm, four test examples are considered. In the construction of these,
we make use of the MATLAB-functions find, intersect and setdiff to efficiently locate
specific nodes in the truss. We mention that in the first three examples, all the problem settings
as listed in [4] are used.
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Examples 1: Tower, and 2: Cantilever

(a) Truss example: Tower.
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(b) Truss example: Cantilever.

Figure 1: Numerical solutions of truss example 1 and 2.

With the given problem settings, we find that the values for the starting points have to
be chosen quite carefully. We control-check that the inequality constraints from problem (6)
are all satisfied before entering the SQP algorithm. Especially A has to be quite close to to
A componentvise for the initial point. Details can be seen in the attached MATLAB-files.
We have managed identified the solution with an error as low as ∼ 10−13 in 25 iterations for
Example 1, and the solution to both Example 1 and Example 2 can be seen in Figure 1.

With a roughly best as possible numerical solution from Example 1, we have estimated the
order of convergence. As can be seen in Figure 2, we seem to obtain a qubic rate of convergence.
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Figure 2: Order of convergence for Example 1.

Example 3: Bridge
In Figure 3 is seen the solution of a bridge construction. Even though the test case is somewhat
bigger, the algorithm still runs fast, with error to ∼ 10−9 in 21 iterations.

Figure 3: Truss example: Bridge. Numerical solution.

Example 4: Crane
At last we present an enormous test case of a crane. In Figure 4 can be seen both the construction
and the numerical solution. As much as 97 nodes is used, and the external forces are split in
two parts. First, at the hook in front, a vertical downforce is placed. To balance this, vertical
downforce is placed at the other end of the horizontal beam. More specifically, the outer four
nodes at the bottom of this part receives downforce. This tries to model the heavy load bricks
which is usually seen on cranes.
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Figure 4: Truss example: Crane. Numerical solution.
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