
TMA 4180 Optimeringsteori
Exam May 15, 2004

Solution with additional comments

The problems are included only for easing the reading!

Problem 1

Consider the unconstrained minimization problem

min
x=(�;�)2R2

f (�; �) = min
x=(�;�)2R2

�
5� 2� � 4� + 2�� + �2 + 2�2

	
: (1)

(a) Compute the gradient and the Hessian of f in an arbitrary point, and show that x� =
(3;�1)0 is the unique global minimum.
(b) Start at x0 = (0; 0)0 and verify that one iteration with the Steepest Descent method
brings you to x1 = (1; 1=2)

0.

(c) Explain the Conjugate Gradient (CG) method applied to the quadratic model problem

Q (x) =
1

2
x0Ax� b0x; (2)

and show that if we start the CG method in x0 = 0 with d0 = �rQ (0) = b as the �rst basis
vector, then x1 is identical to the �rst iteration with the Steepest Descent method starting
from 0.

(d) Starting from x1 in (b), state (without any computations) the result of the next iteration
with the CG method applied to the problem in (1) , and verify that the corresponding search
directions for the two CG iterations are (conjugate) orthogonal with respect to the Hessian
of f .

Solution:

(a) The gradient and the Hessian are given by

rf (�; �) = (�4 + 2� + 2�;�2 + 2� + 4�) ;

r2f =

�
2 2
2 4

�
; (3)

and we note that r2f is positive de�nite everywhere. The function f is hence strictly
convex for all x 2 R2. By putting (3;�1)0 into the expression for rf , we see that
rf (3;�1) = 0, and since f is strictly convex, this will be a unique global minimum.
Some manipulations actually show that

f (�; �) = f (0; 0) +rf (0; 0)
�
�
�

�
+
1

2
(�; �)

�
2 2
2 4

��
�
�

�
= 5 + (�4;�2)

�
�
�

�
+ (�; �)

�
1 1
1 2

��
�
�

�
(4)

= (� � 3; � + 1)
�
1 1
1 2

��
� � 3
� + 1

�
:
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(b) The gradient at (0; 0)0 is (�4;�2), and x1 follows simply by �nding the minimum of
f (x) along the ray

x (�) = (0; 0)0 + � (4; 2)0 = � (4; 2)0 ; � � 0:
We thus compute

d

d�

�
5� 2 (2�)� 4 (4�) + 2 (2�) (4�) + (4�)2 + 2 (2�)2

�
= 80�� 20 = 0;

that is, � = 1
4
, and

x1 =

�
1
1
2

�
: (5)

It is equally simple to compute rf along the ray and �nd � from the requirement that

rf (� (4; 2)) � (4; 2)0 = 0: (6)

(c) The main idea behind the CG method for the N dimensional model problem is to �nd
an expansion of the solution x� of the form

x� =
N�1X
n=0

�ndn; (7)

where fdngN�1n=0 is an A-orthogonal basis, that is

d0nAdm = 0 (8)

for m 6= n. By utilizing that Ax� = b, it is not even necessary to know x� in order to
determine f�ng:

�n =
hdn; x�iA
hdn; dniA

=
d0nAx

�

d0nAdn
=

d0nb

d0nAdn
: (9)

The basis vectors fdng are found iteratively and are all of the form

dn = �rQ (xn)0 + �n�1dn�1

(a somewhat surprising fact!).

Given d0 = b, �0 is determined by

�0 =
d00Ax

�

d00Ad0
=

b0b

b0Ab
: (10)

For the SD method, we determine how far we have to go along the b direction by the
equation

rQ (�0b) � b = (A (�0b)� b)0 b = 0; (11)

which leads to the same answer for �0.
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(d) Since the problem in (??) is 2-dimensional, the CG method will converge in at most 2
iterations, and if x1 is the �rst iteration, the next will actually bring us to the solution,

x2 =

�
3
�1

�
: (12)

It remains to be proved that d1 _ x1 and d2 _ x2 � x1 are A-orthgonal:

x01A (x2 � x1) _
�
2 1

�� 2 2
2 4

��
3� 1
�1� 1

2

�
= 0: (13)

Problem 2:

(a) State the Karush-Kuhn-Tucker Theorem for a local minimum x� of a function f (x) sub-
ject to sets of equality, fci (x) = 0; i 2 Eg, and inequality, fci (x) � 0; i 2 Ig ; constraints.

In the rest of this problem we consider an inequality constrained optimization problem

min
x2


f (x) ; (14)


 = fx ; ci (x) � 0; i 2 Ig ; (15)

where the objective function f (x) and �ci (x) are convex functions for all i 2 I.
(b) Prove that 
 is a convex set.

(c) Assume that x� is a KKT-point, that is,

rL (x�; ��) = 0;
��i � ci (x�) = 0; i 2 I (16)

x� 2 
 ; �� � 0;

where L (x; �) = f (x)�
P

i2I �ici (x) :

Prove that x� is a global minimum for the problem de�ned in Eqns. (14) and (15).

(d) Consider

f (x; y) = x+ 2y;

c1 (x; y; z) = y � 0;
c2 (x; y; z) = 2� (x� 2)2 � y2 � 0; (17)

c3 (x; y; z) = 1� x2 � y2 � 0:

and explain why this is a problem of the form above. Make a sketch and guess a solution.
Then show that (c) is ful�lled for the point you have found.

Solution:

(a) The Karush-Kuhn-Tucker Theorem (KKT Theorem) in our formulation considers the
following problem:

min
x
f (x) ;

ci (x) = 0; i 2 E ; (18)

ci (x) � 0; i 2 I:
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Active constraints (A) in a point x are all equality constraints and the subset among the
inequality constraints where ci (x) = 0. The Linear Independence Constraint Quali�cation
(LICQ) holds at x if frci (x)gx2A are linearly independent.
The KKT Theorem: Assume that x� is a local minimum for 18 and that the LICQ holds
in x�:Then there is a vector of Lagrange multipliers, ��, such that

rf (x�) =
X
i2I[E

��irci (x�) ;

(i) ��i � ci (x�) = 0; i 2 E [ I;
(ii) ��i � 0 for i 2 I:

(19)

(b) We �rst recall that for all convex functions, �i (x), the sets


i) = fx;�i (x) � c g (20)

are convex. The intersection of convex sets is convex, and hence for a collection of convex
functions, the set

fx;�i (x) � c ; i = 1; � � � ; ng (21)

will be convex. Now,


 = fx; ci (x) � 0 ; i 2 Ig = fx;�ci (x) � 0 ; i 2 Ig ; (22)

which is then convex.

(c) Since �� � 0, the Lagrange function

L (x; ��) = f (x)�
X
i2I
��i ci (x)

= f (x) +
X
i2A

��i (�ci (x)) (23)

will be convex in x (NB! ��i = 0 for all i =2 A). But x� will then, sincerxL (x�; ��) = 0, be an
unconstrained global minimum for L (x; ��). Thus, we have for all x 2 
, since ��i ci (x) � 0
for all i,

f (x) � f (x)�
X
i2A

��i ci (x)

= L (x; ��)
� L (x�; ��) (24)

= f (x�)�
X
i2A

��i ci (x
�)

= f (x�) ;

since ci (x�) = 0 for all i 2 A.
(d) First of all, f and c1 are linear and hence convex regardless of signs. Moreover, both
�c2 and �c3 have positive de�nite Hessians.
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Figure 1: Constraints and the feasible domain for the problem in 2 (d).

The domain in the x � y-plane and rf is sketched in Fig. 1. From the gradient of f it
is obvious that the solution is x� = (0; 0)0. All constraints are ful�lled, c1and c2 are active,
and

rc1 (0; 0) = j;
rc2 (0; 0) = 4i; (25)

Thus,

rf (0; 0) = i+ 2j =1
4
rc2 (0; 0) + 2rc1 (0; 0) ; (26)

and

�� =

�
2
1=4

�
> 0: (27)

Problem 3:

(a) Explain what is meant by the standard form of a Linear Programming (LP) problem.
Transform the following problem to the standard form:

max
x1;x2

f2x2 + x1g ;

x1 � 4 + x2; (28)

x2 � 1� 4x1;
x2 � 0: (29)

(b) Determine the minimum value of the objective function in the following problem:

min f7x1 + 2x2 + 3x3 + x4 + 2x5g ;
5x1 + 4x2 + 3x3 + 2x4 + x5 = 1; (30)

xi � 0
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Hint: The dual problem of

min c0x;

Ax = b;

x � 0; (31)

is

max
�
b0�;

A0� � c: (32)

Apply the KKT-equations for the dual problem.

Solution:

(a) The standard form is as follows:

min
x
c0x

Ax = b;

x � 0:

Usually, it is also added that A should have full row rank.

In our problem, there is no bound on x1, so we write x1 = y1�y2 , y1;y2 � 0, and introduce
two additional slack variables s1 and s2 in order to convert the inequalities to equalities:

min
y1;y2;x2

f�2x2 � y1 + y2g ;

y1 � y2 + s1 = 4 + x2; (33)

x2 = s2 + 1� 4 (y1 � y2) :

This can be written as
min (�2;�1; 1) � (x2; y1; y2)0 (34)

s1 + y1 � y2 � x2 = 4;
s2 � 4y1 + 4y2 � x2 = �1; (35)

s1; s2; y1; y2; x2 � 0;

from which b and A follows at once.

(b) In the present case,
c0 = (7; 2; 3; 1; 2) ; (36)

and

A = [5; 4; 3; 2; 1] ;

b = (1) :
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The dual problem becomes

max
�
� � 1 = max

�
�;

5� � 7;
4� � 2;
3� � 3; (37)

2� � 1;
1� � 2;

which clearly has the solution �� = 1=2. By the Duality Theorem, we then also know the
optimal value of the objective function,

min c0x = max� = 1=2: (38)

In order to �nd the x-es, we let x be the Lagrange multipliers for the dual problem so that

L (�; x) = (�b)0 �� x0 (c� A0�)

(NB! Remember to turn max b0� to min (�b)0 � before stating the KKT equations!). The
KKT equations are then

r�L (�; x) = �b+ Ax = 0;
xi (c� A0�)i = 0; i = 1; 2; � � � ; n; (39)

x � 0:

Of course, the KKT-equations are the same for the dual and the primal problems, but the
above equations are in a form that can be used right away.

We know that �� = 1=2, so that

c� A0�� =

0BBBB@
7� 5 � 1

2

2� 4 � 1
2

3� 3 � 1
2

1� 2 � 1
2

2� 1 � 1
2

1CCCCA =

0BBBB@
9
2

0
3
2

0
3
2

1CCCCA � 0: (40)

Since xi (c� A0�)i = 0, the only components of x that are non-zero are x2 and x4, and the
KKT equations for the convex problem (cf. Problem 2!) above are satis�ed for

x1 = x3 = x5 = 0

4x2 + 2x4 = 1 ; x2; x4 � 0: (41)

All these solutions are thus global minima with min c0x = 1=2 (which is easily veri�ed!).

Problem 4

(a) De�ne what is meant by a convex and a strictly convex functional J (y) de�ned for
all y-s in a convex domain D of functions, and show that all functions y0 2 D such that
�J (y0; v) = 0 are global minima.
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Many control problems lead to the minimization of a functional of the form

J (y) =

Z T

0

�
y (t)2 + _y (t)2

�
dt; y 2 C1 [0; T ] (42)

(b) Show that J is strictly convex.

(c) Let
D =

�
y 2 C1 [0; T ] ; y (0) = 1 ; y (T ) is free

	
: (43)

Solve the optimization problem
min
y2D

J (y) (44)

when

G (y) =

Z T

0

y (t) dt = 0: (45)

(d) Consider the functional

H (y) =

�Z T

0

y (t) dt

�2
; y 2 C [0; T ] (46)

Show that the functional is convex, but not strictly convex.

(e) Solve the problem

min
y2D

fJ (y) + �H (y)g ; � > 0;

D =
�
y 2 C1 [0; T ] ; y (0) = 1 ; y (T ) is free

	
(47)

What happen to the solutions when �!1?

Hint: Use partial integration to get rid of v0 in �J (y; v), and recall the equation in (c).

Solution:

(a) The functional J is convex if

J (y + v)� J (y) � �J (y; v) (48)

for all y ; y + v 2 D. It is strictly convex if the inequality is sharp for all v 6= 0.
If �J (y0; v) = 0,

J (y)� J (y0) = J (y0 + y � y0)� J (y0) � �J (y0; y � y0) = 0: (49)

Hence, J (y) � J (y0) for all y 2 D, and y0 is a global minimum.
(b) This follows immediately since the integrand is strongly convex. It can also be seen
directly if we use that

�J (y; v) = 2

Z T

0

[yv + _y _v] dt; (50)
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since

J (y + v)� J (y) =
Z T

0

�
(y + v)2 + ( _y + _v)2 � y2 � _y2

�
dt

= �J (y; v) +

Z T

0

�
v2 + _v2

�
dt: (51)

The last integral is strictly positive for all non-zero functions v 2 C1 [0; T ].
(c) We introduce a Lagrange multiplier � and consider the extended functional

L (y; �) =
Z T

0

�
y (t)2 + _y (t)2

�
dt+ �

Z T

0

y (t) dt;

=

Z T

0

�
y (t)2 + _y (t)2 + �y (t)

�
dt: (52)

The Euler equation becomes

d

dx

�
@f

@ _y

�
� @f
@y

=
d

dx
(2 _y)� �� 2y = 0; (53)

or

�y � y = �

2
; (54)

with the general solution

y (t) = A cosh t+B sinh t� �
2
: (55)

The boundary conditions are a �xed end-point condition at t = 0 and a natural condition
at t = T :

y (0) = 1;�
@f

@ _y

�
(T ) = 2 _y (T ) = 0; (56)

and hence,

y (t) =

�
1 +

�

2

�
cosh (T � t)
coshT

� �
2
: (57)

We determine � by requiring that
R T
0
y (t) dt = 0, that is,Z T

0

��
1 +

�

2

�
cosh (T � t)
coshT

� �
2

�
dt =

�
1 +

�

2

�
sinhT

coshT
� �T
2
= 0;

or

� =
2 tanhT

T � tanhT : (58)

Hence,

y� (t) =

�
1 +

tanhT

T � tanhT

�
cosh (T � t)
coshT

� tanhT

T � tanhT : (59)

=
T cosh(T�t)

coshT
� tanhT

T � tanhT =
T cosh (T � t)� sinhT
T coshT � sinhT : (60)
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(A unique solution since J (y) + �
R T
0
y (t) dt is strictly convex and the solution for � is

unique).

(d) We need to compute the derivative, and use the standard formula

�H (y; v) =
dH (y + "v)

d"

����
"=0

= 2

�Z T

0

y (t) dt

�Z T

0

v (t) dt: (61)

Now,

H (y + v)�H (y) =
�Z T

0

y (t) dt+

Z T

0

v (t) dt

�2
�
�Z T

0

y (t) dt

�2
= 2

�Z T

0

y (t) dt

�Z T

0

v (t) dt+

�Z T

0

v (t) dt

�2
(62)

� 2
�Z T

0

y (t) dt

�Z T

0

v (t) dt = �H (y; v) ;

which shows that H is convex. However,

H (y + v)�H (y) = 0 (63)

for all v such that
R T
0
v (t) dt = 0, so that H is not strictly convex.

(e) We follow the hint, and re-derive the Euler equation:

�J (y; v) =

Z T

0

[2yv + 2 _y _v] dt

= [2 _yv]T0 +

Z T

0

�
� d

dx
(2 _y) + 2y

�
v (t) dt: (64)

Thus,

� (J (y; v) + �H (y; v)) = [2 _yv]T0 +

Z T

0

�
� d

dx
(2 _y) + 2y

�
v (t) dt+ 2�

�Z T

0

y (t) dt

�Z T

0

v (t) dt

= [2 _yv]T0 + 2

Z T

0

�
��y + y + �

Z T

0

y (s) ds

�
v (t) dt: (65)

Since the functional J (y; v) + �H (y; v) is convex, it is enough to ensure that

� [J (y; v) + �H (y; v)] = 0 (66)

for all allowed v-s. This is ful�lled if

��y + y + �
Z T

0

y (s) ds = 0;

y (0) = 1; (67)

_y (T ) = 0:
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The �rst equation looks strange, but if we let the integral be equal to a constant, sayZ T

0

y (s) ds = C; (68)

we get exactly the same problem as in (c). The solution ful�lling _y (T ) = 0 is

y (t) = A cosh (T � t)� �C; (69)

and A and C are determined from

y (0) = 1 = A coshT � �C;

C =

Z T

0

y (s) ds = A sinhT � �CT; (70)

or

C =
sinhT

1 + �T
A;

A =
� (T�+ 1)

� sinhT � (T�+ 1) coshT :

The solution is unique, since J + �H is strictly convex.

When �!1,

lim
�!1

A =
�T

sinhT � T coshT ;

lim
�!1

�C =
sinhT

sinhT � T coshT ; (71)

and

lim
�!1

y� (t) =
�T

sinhT � T coshT cosh (T � t) +
sinhT

sinhT � T coshT

=
T cosh (T � t)� sinhT
T cosh (T )� sinhT ; (72)

which we recognize as the solution in (c)!
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