
TMA 4180: Optimeringsteori
Eksam May 24, 2007

Problems and solutions

(Preliminary version)

This solution is more detailed than what is required for a full score.

Problem 1:

The function f is de�ned for all (x; y) 2 R2:

f (x; y) = x2 + 2y2 � 2xy � 2y3 + y4: (1)

Determine the global minima (if they exist).

Solution: We start by computing rf and r2f :

rf (x; y) =
�
2x� 2y ; 4y � 2x� 6y2 + 4y3

�
;

r2f (x; y) =
�
2 �2
�2 4� 12y + 12y2

�
: (2)

Candidates for solutions will be where rf (x; y) = 0, or

y = x; (3)

4y � 6y2 + 4y3 = 2x:

The solutions of Eqn. 3 are easily seen to be

x(1) = (0; 0)
0 ;

x(2) =

�
1

2
;
1

2

�0
; (4)

x(3) = (1; 1)
0 :

We check the Hessians:

r2f (0; 0) =
�
2 �2
�2 4

�
> 0;

r2f
�
1

2
;
1

2

�
=

�
2 �2
�2 1

�
; inde�nite, (5)

r2f (1; 1) =
�
2 �2
�2 4

�
> 0:

Thus, (0; 0)0 and (1; 1)0 are minima, and both are strict since the Hessian is positive de�nite. The
function values in both minima are equal to 0. The point in the middle is actually a saddle point, and
the function value is also larger (equal to 1/16). Both (0; 0)0 and (1; 1)0 are global because f (x; y)!1
when k(x; y)k ! 1.
The problem may also be solved by the following trick :

f (x; y) = x2 + 2y2 � 2xy � 2y3 + y4 = (y � x)2 +
�
y � y2

�2
: (6)

The global minimum is 0, and this is obtained for y = y2, y = x, or (0; 0)0 and (1; 1)0.
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Problem 2

(a) Show that x0 = (2; 2;�1)0=3 is the only KKT point for the problem

min
x2R3

(x1 + x2)

c1 (x) = x1 + x2 + x3 � 1 = 0 (7)

c2 (x) = x
2
1 + x

2
2 + x

2
3 � 1 � 0

(b) Is x0 really a solution? (Hint: Illustrate the situation as seen in the plane c1 (x) = 0, unless you
apply the second order conditions)

Solution:

(a) We observe that 
 is unbounded, and that f (x) = x1 + x2 is unbounded below on 
. We can
only hope for local minima, and rL = 0 gives0@11

0

1A =

0@11
1

1A�1 +
0@2x12x2
2x3

1A�2: (8)

There are no solutions for �2 = 0. Thus, �2 6= 0, and the inequality constraint is active. Subtracting
the �rst two equations shows that x1 = x2, and we are left with four equations (rL = 0 and the
constraints):

�1 + 2x1�2 = 1;

�1 + 2x3�2 = 0;

2x1 + x3 = 1; (9)

2x21 + x
2
3 = 1:

The two last equations have solutions

xa = (0; 0; 1)
0 ; xb = (2; 2;�1)0=3: (10)

The multipliers are found from the �rst pair:

�a = (1;�1=2)0 ; �b = (1=3; 1=2)0 : (11)

Since �2 needs to be larger than 0, the only KKT-point is xb = x0.

(b) The intersection between the surface of the sphere (c2 (x) = 0) and the plane (c1 (x) = 0) is a
circle, and 
 is the domain in the plane outside the circle. The contours (level curves) of f are still
straight lines, and the situation is illustrated in �g. 1. The points xa and xb are marked, and we
observe that xa is actually a solution if c2 has changed sign.

The �rst order conditions are not su¢ cient to decide whether xb is a minimum, but moving along the
the rim of 
 (the circle), it is clear that this is not the case.

It is also possible to check the Hessian of the Lagrange function

r2x
�
x2 + x3 � ��1 (x1 + x2 + x3 � 1)� ��2

�
x21 + x

2
2 + x

2
3 � 1

��
= �2��2I3�3 = �I3�3: (12)

The second order test considers the projected Hessian, Z 0r2xL (x0; ��)Z, where Z = [z1; � � � ; zj ] is a
basis for N (A),

A =

�
rc1 (xa)
rc1 (xb)

�
=

�
1 1 1
4
3

4
3 �2

3

�
: (13)
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Figure 1: The problem in the plane x1 + x2 + x3 = 1.

Since A has rank 2, the null space N (A) is spanned by
�
�1 1 0

�0
. But no (non-zero) projection

of �I3�3 will ever be positive semi-de�nite, so we conclude that no local minimum exists.

Problem 3

(a) Express the following LP-problem in Standard Form

min
x
x0c;

Ax � b; (14)

x; c 2 Rn; b 2 Rm; A 2 Rm�n:

(b) The dual problem to the LP-problem

min
x
x0c;

Ax = b; x � 0; (15)

is

max b0�;

A0� � c: (16)

How is the dual problem de�ned, and what is the most important result about the dual problem?

(c) Apply duality to determine the minimum value of the objective function

f (x) = 2x1 + 6x2 + 3x3 + 5x4 + 2x5 (17)

when

x1 + x2 + 0 + x4 � 2x5 = 1;
�x1 + x2 + x3 + 0� x5 = 1; (18)

xi � 0; i = 1; � � � ; 5:

Solution:

(a) Since we need non-negative variables and an equality constraint instead of an inequality, we
introduce x = y � z; y; z � 0, and a slack variable s � 0 so that

A (y � z) + s = b: (19)
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Figure 2: Feasible domain de�ned from the �ve inequalities (In order to check which side of the line
belongs to 
, check the origin!). The level curves are parallel to one of the sides in the polygon, so
that the solution is not unique. However, (2; 2) is a solution, and the objective value is 2 + 2 = 4.

New variables and matrices then become

~x =

24 yz
s

35 ; ~c =
24 c
�c
0

35 ; ~A = [A (�A) I] ; (20)

and the standard problem is

min
~x
~c0~x

~A~x = b; ~x � 0: (21)

(b) The primal and dual problems have equivalent KKT-equations. The central result is the Duality
Theorem which states that if either the dual or the primal has a feasible solution, then both problems
have a solution, and the optimal objective values are equal.

(c) Since only the optimal value of the objective is asked for, we turn to the dual problem stated in
(b):

max
�2~


(�1 + �2) (22)

when 266664
1 �1
1 1
0 1
1 0
�2 �1

377775
�
�1
�2

�
�

266664
2
4
3
5
2

377775 (23)

The easiest is to make a graph similar to the one in Fig. 2. The solution of the dual problem is found
along the line �2 = 4� �1, between �1 = 1 and �1 = 3, and max� (�1 + �2) = 4 = minx2
 f (x).
Problem 4

(a) What is the idea behind Tikhonov regularization of inverse problems?
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(b) Prove that the solution of
min
x

n
kAx� bk2 + � kxk2

o
(24)

is unique and may be expressed in terms of the Singular Value Decomposition of A as

x� =

r=rank(A)X
k=1

�k
�2k + �

�
u0kb
�
vk (25)

What happens when �! 0 and �!1?
(Recall that a matrix A 2 Rm�n has a Singular Value Decomposition A = U�V 0 where V =
[v1; � � � ; vn], U = [u1; � � � ; um] and (�)kk = �k 6= 0 for k = 1; � � � ; r = rank (A). Moreover,
V 0V = V V 0 = In�n, U 0U = UU 0 = Im�m. The Moore-Penrose generalized inverse is de�ned
A+c =

Pr
k=1

1
�k
(u0kc) vk)

Solution:

(a) Tikhonov regularization consists of stabilizing the solution of an inverse problem (formulated as
an optimization problem) by adding a penalty term to the objective. Typically, it takes the form

min
x
ff (x) + �N (x)g ; (26)

where � is a weighting factor and N a regularization function, e.g.,

� N (x) = kxk2 for punishing the size of the x.

� N (x) = kx� x0k2 for punishing x when going too far away from what we think is a reasonable
solution x0.

� N (x) = kL (x)k2, where L gets large when x becomes irregular, and thus punishing irregularities.

(b) We observe that

kAx� bk2 + � kxk2 = (Ax� b)0 (Ax� b) + �x0Ix
= x0

�
A0A+ �I

�
x� 2

�
A0b
�0
x+ kbk2 (27)

Since A0A � 0, we have A0A+ �I > 0, and the (unique) solution is obtained for (A0A+ �I)x� = A0b.
In order to get the form given in the problem, we need the SVD of A0A+ �I:

A0A+ �I = V �0U 0U�V 0 + �V V 0 = V
�
�0�+ I�

�
V 0 = V CV 0; (28)

where C = diag fckg,

ck =

�
�2k + �; 1 � k � r;
�; r < k � n: (29)

The solution may now be written

x� =
�
V C+V 0

� �
V �U 0

�
b = V

�
C�1�

� �
U 0b
�
=

rX
k=1

�k
ck

�
u0kb
�
vk; (30)

which is identical to the formula given in the problem.
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Finally,

lim
�!1

x� = 0;

lim
�!0

x� = A
+b: (31)

Typically, the limit when �! 0 is numerically unstable and the reason for the regularization.

Problem 5

When landing, an old-fashioned aircraft brakes with a combination of air-brakes (�aps) and mechanical
brakes. Using dimensionless variables throughout, the total braking force may be written F = ��v2�u,
where v is the velocity of the aircraft and u the mechanical braking force. The brakes reduce the velocity
from v = 1 at the start of the landing �eld, x = 0, to v = 0 at x = 1. A simple argument involving
kinetic energy (E (x) = v (x)2), leads to dE(x)

dx = ��v2 (x) � u (x). Locally, heat builds up in the
mechanical brakes, and we shall assume that generated heat per length unit, dQds _ u2:
The objective is now to �nd the optimal braking strategy which stops the aircraft at x = 1, and at the
same time, minimizes the generated heat.

(a) Show that problem may be formulated as

min
u

Z 1

0
u2 (x) dx;

d

dx
v2 (x) = ��v2 (x)� u (x) ; (32)

v (0) = 1; v (1) = 0:

Prove that the dynamics and boundary conditions lead to a linear functional G (u) that forms a con-
straint for the minimization.

(Hint: The general solution of the di¤erential equation y0 (x) + �y (x) + u (x) = 0; y (1) = 0, is

y (x) =

Z 1

x
u (s) e�(s�x)ds): (33)

(b) Determine the optimal breaking force u� (x) and show that the solution is unique.

Solution:

(a) The total amount of generated heat (assuming nothing is conducted or radiating away) is

Q =

Z 1

0
u2 (x) dx: (34)

The dynamics follows from the energy dissipation equation stated in the text,

d

dx
v2 (x) = ��v2 (x)� u (x) ; (35)

and the boundary conditions are v (0) = 1, v (1) = 0.

If we now introduce y (s) = v2 (s) as a new variable, the di¤erential equation becomes

y0 (s) + �y (x) + u (x) = 0;

y (0) = v (0)2 = 1; y (1) = v (1)2 = 0: (36)
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Applying the hint, all solutions vanishing at x = 1 may be written as

y (x) =

Z 1

x
u (s) e�(s�x)ds; (37)

and since we need to ful�ll y (0) = 1, we obtain the constraint

1 = y (0) = G (u) =

Z 1

0
u (s) e�(s�0)ds =

Z 1

0
u (x) e�xdx: (38)

(b) The problem then consists of

min
u

Z 1

0
u2 (x) dx;Z 1

0
u (x) e�xdx = 1: (39)

The �rst functional is strictly convex since the kernel is strongly convex, and since the constraint
involves a linear functional, the Lagrangian,

L (u; �) =
Z 1

0
u2 (x) dx+ �

Z 1

0
u (x) e�xdx; (40)

will be strictly convex. Thus, if there is a solution, it is necessarily unique. The kernel of L is

u2 (x) + �u (x) e�x; (41)

and the Euler equation is therefore

d

dx

@

@u0
�
u2 + �ue�x

�
� @

@u

�
u2 + �ue�x

�
= 0; (42)

or
2u+ �e�t = 0; (43)

Thus,

u (x) = ��
2
e�x: (44)

The value of � is determined from the constraint,

1 =

Z 1

0

�
��
2
e�x
�
e�xdx =

�
��
2

�
1

2�

�
e2� � 1

�
; (45)

and we obtain
u� (x) =

2�

e2� � 1e
�x: (46)

It is also easy to �nd the velocity as a function of x,

v2 (x) = y (x) =

Z 1

x
u (s) e�(s�x)ds

=
2�

e2� � 1

Z 1

x
e�sds =

2

e2� � 1
�
e� � e��x

�
: (47)

7


