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EXAM IN OPTIMIZATION THEORY (TMA4180)

Friday May 22, 2009
Time: 09:00-13:00

Examination aids: C Simple calculator, Formula handbook (Rottmann)

Problem 1 Consider the unconstrained minimization problem

min T,Y),
(m,y)GRZI( v)

J(2,y) =1+ 2y +2® + 2y + 24°.

a) Compute the gradient and the Hessian of f for arbitrary x = [z,y]” € R? and show that
x* = [1,—1]T is the unique global minimum.
Answer:

V/(z,y) = 2z + 2y,2 + 22 + 4y], sz(w,y):[; i}

Clearly, the gradient vanishes at x* = [1, —1]7 and the Hessian is positive definite everywhere.

b) Suppose that a line scarch method has been given x, = [0, —1]7 as initial point and that
a search direction p = [1.1]7 has been selected. Verify that p is a descent direction and
determine the next approximation x; = xg + ap such that

Q = arg mjg f(xo + ap).

Answer: We find that Vf(zg) = [-2, —2] so that Vf(zo) - p = —4 < 0 thus p is a descent direction.
We compute
flxo+ap) = fla,a— 1) =5a% —4a +1

so that the unique minimum is at « correspouding to x; é, - g]T
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c) Suppose now that we want to solve the line scarch problem approximately. Given con-
stants 0 < ¢; < ¢ < 1, show that the Wolfe conditions are satisfied for x, and p as in
b) whenever

(1—c) <a<

(1—¢y).

(Sl )
G| o

Answer: This is just a matter of checking each of the conditions

L f(xo +ap) < f(x0) +c1aV/[(x0)p
2. Vf(xo+ap)p > c2V/[(xo)p

substituting the values for xo, p.

Problem 2 Consider the constrained minimization problem

min 4z, + xo, (2.1)

rER?
subject to
a(x) = x5 — a2 >0, (2.2)
Cg(.’l') =A- T2 2 O, A>0. (23)

a) Sketch the domain Q defined by the constraints ¢; and ¢, and show that € is convex. Is
Q strictly convex? Does the LICQ hold for all points in Q7

Answer:

In the figure, we have used A = 4. It is also clear
from the sketch that € is convex, however, since it is
defined by constraints 22 — z, < 0, z2 < A, whose left
hand sides are both convex (check Hessian), Corollary
1 of the Basic Tools Note asserts the convexity. Q is
not strictly convex since for instance every point on the
straight line segment between (—2,4) and (2, 4) belongs
to Q. As for the LICQ, we compute the matrix A(z) i
with rows Ve; and Ve

Az) [‘%”"1 _11]

So rank(A(z)) = 2 on {(zy,z2) € Q: 2y # 0. In other words, the LICQ holds everywhere except on the
Io-axis.
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b) Write down the KKT conditions for this problem. Show that if a point +* is a KKT
point with A > 4, then the corresponding Lagrange multiplier A% = 0.
Hint. Assume to the contrary A; > 0 and then analyze the KIKT conditions to obtain a
contradiction.

Answer: KKT conditions

1 +2M\ 0 =0
=X 4+A=0
My —af) =0
A2{A —x2) =0

A, A2 >0

Assume Ay > 0. The 2nd equation gives Ay > 1, the last two equations imply @3 = ry = A. Solving the
15l equation for Ay and squaring, leads to A3 = 4/A > 1 so that A < 4, a contradiction.

c) Suppose now that A > 4 and determine all KIKT points. Ilave you found a global
minimum?

Answer: We can assume A; = 0, so that A, 1, 2 and w9 4. There is only this one
K KT point, and since both Q and f(ry,x2) are convex, we conclude that (—2,4) is the unique global
minitmum.

d) Consider now the minimization problem, but only subject to the constraint (2.2). For-
mulate the logarithmic barrier problem, and determine the solution to the resulting
unconstrained minimization problem, x, in terms for the barrier parameter pu. We have
seen that a function A;(p) can be defined such that A(u) — A\ as p — 0 where ), is
the associated Lagrange multiplier for the constrained problem. Determine A;(u).

Answer: We write down the barrier function
Q(x, 1) = dzy + z2 — plog(xa — x7)

Compute V,Q(z, p) = [4 + 2221, 1 — ﬁ] First order conditious give z, = (—2,4+ p), so as p — 0

T2—Ty !

we get z° = (—2,4) as before. The function Ay () is defined as

L +p—(-2)?
m

M) = & (:'“) 1

Problem 3 Explain what is meant by the standard form of a linear programming problem,
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and transform the following one to such a form.

min 3z, — ay,

1,22
Ty <1+ 4,
T S 4 - Ty,

Answer: By standard form we mean a formulation
min ¢’ 2 subject to Az = b, >0

For our specific problem, we introduce nou-negative slack variables zj, z0 and turn the given inequalities into
equalities

v
e
82
¥

—x) + T2+ 2 =4, z)
T + T + 22 = 4,

AV Y
o o

R
i

Finally, to get only non-negative variables, we need to split z; into z; = z} — 27 where 2§ = max(z,,0),
i max(—z;,0). Substitute this splitting for every occurence of r;. We then define the 5-vector z
(:lrfr, Ty, ,Ta,21,22)7 and we obtain the standard form, where

¢— (3,-3,-1,0,0)T, A (‘} 11 ?)b (4,4)T

Problem 4

A cross-country runner wants to move from
location A to B (see figure) in a marsh with B
variable wetness, and is faced with the prob-
lem of choosing the fastest path. The speed
of which she can run is assumed to depend
on the z-coordinate such that her speed at a
location (z,y) is p(z) for a positive contin-

uous function p(x). One can therefore work A
out that along a path y(z) from A to B, the
time she spends will be y
LB ! : 2 1
Fy) = / VYRr+L, (4.1)
e P)
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where @y and @y are the w-coordinates of the points A and B respectively. Our main focus in
this problem will be

Find y such that F(y) = min F(u), D= {ye C'lza,xp):yles) = ya,yles) = ys} (4.2)

ueD
Note that the w-axis is vertical in the figure.

e 1+ 22, .
a) Show that the function [(z,y,2) = ——— is strongly convex on [r4,rg] x R% What
p(z

are the consequences for the functional F'(y), and what does it tell us about the existence
and uniqueness of the solution to the problem (4.2)?

Answer: We can use Proposition 3.10 in the book of Troutman (p 62). We therefore compute

(1 + :'.’) 3/2

O

S

and thus strongly convex on [z, rg] X R2. The consequence is that F' (y) is strictly convex, and there
exists a unique solution to (4.2).

b) Set p(x) = @ in the rest of this problem, and show that any function y € D satisfying

T s .
y (‘,I') : _ E, (4.3)
1+y/(x)? T
for a constant r, will be a solution to (4.2).

Answer: We can use Theorem 3.7 of Troutman. and conclude that a y € D satisfying
S=(z,y'(z)) = const

would be the (unique) solution to our problem. By substituting p(z) = x, differentiating f once, and
defining const = 1/7, the result follows. Note that we have excluded the case that const = 0, but this
would correspond to an empty a-interval.

c) Verify that functions y = y(x) satisfying

2 2 2

B+ (y—ye) =r

arc solutions to (4.3), and determine the constants yc og r in terms of z4,y4, T8, YB-
Draw a sketch where all these constants are shown.

Answer: To verify the solution, use implicit differentiation to deduce

2 9

' 1/ N2 x? + (y - yC) re
y(z) = - 1+y'(2) = —
2 (=) (v —yc)? (v —yc)?
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and the answer (o the first question follows easily. In order to determine ye and r, we substitute the
boundary points (z4,y4) and (rg,yg into the solution ansatz and subtract the two, this removes 2
from the equation and we solve for ye as
Yya+yp  Ip— Ty Tq+Tp
Ye ;
2 YB — YA 2

The expression for r then follows by usiug one of the two conditions, e.g.

r= \/L"\ + (ya —yo)?

Finally, we include a figure, showing that the solution is a circular arc, centered on the y-axis at (0, y.)
with radius r.

)
X
y
Problem 5 In this final problem you shall answer just yes or no to each question a) and

b), and in question c) you shall just select onec of the three alternatives without any further
explanation or discussion.

a) In the linear Conjugate Gradient method, the search vectors generated are orthogonal
with respect to the standard inner product, i.e. (p;, p;) = 0 whenever i # j, whereas the
residual vectors r; = b — Aux, are A-orthogonal, (r;,7;)a = (Ar,,7;) = 0 for i # j, where
A is the (SPD) matrix used to define the quadratic form? Yes or No.

Answer: No

b) In the Trust Region method one needs, in every iteration, to consider a local problem of
the form

1
minm(p), m(p) = f+gTp+ -2-pTBp. subject to ||p|| < A.
]
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The question you are to answer is: Can one always obtain a unique global mininmm for
this problem as a vector p* which satisfies, for some A > 0, the conditions

(B+ M) = —_(

NA ] =

(B 4+ Al) is positive semidefinite

Yes or No.

Answer: Yes

In an active set method for solving a quadratic programming problem with linear con-
straints, supposc that one has a working set Wy for the point x¢. In calculating the next
iterate , ¥; = xg + p with the reduced problem, one finds that p = 0, but concludes that
T 18 not a KKT point for the total problem because some of the Lagrange multipliers
are negative. What is the next course of action

A. Tind the most negative A\; € Wy for 29 and remove the index j from Wy, i.e. set
W; = Wo\{j} and consider the reduced problem with this new smaller working set.

B. Include a new index among the currently inactive constraints, setting W; = WoU{j'}

where j' is the smallest index not belonging to Wy. Consider the reduced problem
with this larger working set.

C Discard all constraints, i.e. set W, = () and restart the algorithm.

Answer: A



