
TMA 4180 Optimization Theory
Exam May 21, 2010

Solution with some additional comments
(Revision May 25)

Problem 1

Let
f (x) = 3x2 � 12x+ y4 � 2y2 � 5; x =(x; y) 2 R2:

(a) Compute the gradient and the Hessian of f , and determine the domain D 2 R2 where
the function f is strictly convex.

(b) Solve
min
x2R2

f (x) :

Solution:

(a)

rf (x) =
�
6x� 12; 4y3 � 4y

�
;

r2f =

�
6 0
0 12y2 � 4

�
:

The function f is strictly convex when both eigenvalues �1 and �2 are strictly positive
(r2f > 0). Since

�2 = 6;

�1 = 12y
2 � 4;

the domain D will be
�
(x; y) ; jyj > 1=

p
3
	
.

(b) Consider the necessary �rst order condition rf = 0, that is,

6x� 12 = 0;
4y3 � 4y = 0:

Moreover, f (x)!1 when jxj ! 1, so solutions exist.
The candidates for solutions are obviously (2; 0), (2; 1), (2;�1). The last two points are
in the domain D and are then strict local minima. The function values in both points
are equal, f (x�) = �18, and the points are actually global minima since f (2; 0) = �17,
and (2; 0) is a saddle point (Just checking f (x) for all 3 candidates is also su¢ cient in the
present case).
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Problem 2

In Trust Region iterative methods for the unconstrained problem

min
x2Rn

f (x) ;

we consider, for each iteration step, sub-problems of the form

min
p0p��2

m (p) ; (1)

where
m (p) = f (xk) + b

0p+
1

2
p0Bp: (2)

(a) State the Lagrangian and the KKT-equations for the sub-problem in Eq. 1 and 2, and
discuss the solution when we assume that B is positive de�nite, B > 0.

(Hint: Since B > 0, the equation (B + �I) p = �b has a unique solution for all � � 0)
(b) How is the size of the trust region adjusted during the iteration?

Solution:

(a) The constraint may be written as c (p) = (�2 � p0p) =2 � 0, and the Lagrangian may
therefore be written

L (p; �) = f (xk) + b0p+
1

2
p0Bp� �

�
�2 � p0p

�
=2;

with the KKT-equations equations

rpL (p; �)0 = Bp+ b+ �p = 0;
�
�
�2 � p0p

�
= 0;

�2 � p0p � 0;
� � 0:

(Since the hint should actually have been stated for (B + 2�I) p = �b, a missing factor 1/2
has been ignored during the evaluation).

The �rst equation,
(B + �I) p = �b;

has a unique solution p (�) for all � � 0. If jp (0)j � �, then p� = p (0) is clearly the solution
of the subproblem. Otherwise, if jp (0)j > �, we increase � from 0 until jp (�0)j = �.
Observe that p (�)! 0 when �!1, so such a value �0 > 0 always exists. Since m (p) is
strictly convex and domain for p is bounded and convex, the solution to the sub-problem
is unique. Veri�cation of the KKT-equations for p� = p (�0) is straightforward.

(b) If the current approximate solution is xk and xk+1 = xk + p�, we consider the ratio

� =
Actual decrease

Estimated decrease
=
f (xk)� f (xk+1)
f (xk)�m (p�)

:

If � � 1, � is increased for the next subproblem, say � := 2�; if � � 1, � is decreased,
say � := �=2. Otherwise, � is unchanged. Moreover, xk+1 := xk + p

� unless � is very
small or even negative.
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Problem 3

Consider the constrained optimization problem

min
x2


f (x) ; (3)


 = fx ; ci (x) � 0; i 2 Ig ; (4)

where the objective function f (x) and �ci (x) are convex for all i 2 I.
(a) Show that 
 is convex.

(b) Assume that (x�; ��) is a KKT-point,

rxL (x�; ��) = 0;
��i � ci (x�) = 0; i 2 I;

��i � 0; i 2 I; (5)

x� 2 
;

where L (x; �) = f (x)�
P

i2I �ici (x) :

Show that x� is a global minimum for the problem de�ned in Eqs. 3 and 4.

(c) Let, for (x; y) 2 R2;

f (x; y) = (x� 2)2 + (y + 2)2 ;
c1 (x; y) = x� y + 1 � 0;
c2 (x; y) = y � 0; (6)

c3 (x; y) = 4� (x+ 1)2 � y2 � 0; (7)

and explain why this is a problem of the form above. Find the solution by making a simple
sketch. Show that the solution is a regular KKT-point.

Solution:

(a) First of all, 
 = \i2I
i is convex if each 
i is convex. Let x1; x2 2 
i and x� =
�x1 + (1� �)x2, � 2 [0; 1]. Then, since �ci is convex,

�ci (x�) � ��ci (x1)� (1� �) ci (x2) � 0:

Hence, ci (x�) � 0 and 
i is convex.
(b) We observe that L (x; ��) = f (x) +

P
i2I �

�
i (�ci (x)) is convex since ��i � 0. Let x be

an arbitrary point in 
:

f (x) � f (x) +
X
i2I
��i (�ci (x)) (8)

= L (x; ��) (9)

� L (x�; ��) +rxL (x�; ��) (x� x�) (10)

= L (x�; ��) = f (x�) ; (11)
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Ω( )3 , 0c x y ≥

Unconstrained min.

1

10 x

y

1

( )2, 2−

( )2 , 0c x y ≥

( )1 , 0c x y ≥

Figure 1: Sketch of f (x; y), and the constraints forming 
: The obvious solution is indicated
by a star, and the global minimum of f is outside 
:

which is all we need. Alternatively, it is acceptable to say that since L is convex and
rxL (x�; ��) = 0, then x� is a global minimum for L (x; ��). Hence,

f (x�) = L (x�; ��) � L (x; ��) = f (x) +
X
i2I
��i (�ci (x)) � f (x) : (12)

(c) First of all, f is convex since the Hessian is positive de�nite. The constraints c1 and c2
are linear and convex regardless of signs. Moreover, �c2 is strictly convex since it also has
a positive de�nite Hessian.

The domain 
 in the xy-plane and contour lines of f are sketched in Fig. 1. It is obvious
that the solution is at x� = (1; 0)0. All constraints are ful�lled, but only c2and c3 are active.
For the gradients, we note that

rc2 (x�)0 = j;
rc3 (x�)0 = �2 (x� + 1) i� 2y�j = �4i (13)

Thus,rc1 (x�) and rc2 (x�) are linearly independent (in fact orthogonal). The solution is
at a regular point (LICQ satis�ed) and

rf (x�) = 2 (1� 2) i+ 2 (0 + 2) j = �2i+4j =4rc2 (x�) +
1

2
rc3 (x�) : (14)

Also, �� =
�
0; 4; 1

2

�0 � 0; and all KKT-equations are ful�lled.
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Problem 4

Let

F (y) =

Z 1

0

y0 (x)2 dx:

Solve the problem

min
y2D

F (y) ;

D =
�
y 2 C1 [0; 1] ; y (0) = 0; y (1) = free

	
;

G (y) =

Z 1

0

y (x) dx = 1:

Solution:

Since f (x; y; z) = z2 is strongly convex, and y (x) has one �xed boundary, F is strictly
convex. The constraint G is convex since it is linear. The domain D is convex, and we
introduce the strictly convex Lagrangian

L (y; �) =
Z 1

0

�
y0 (x)2 + �y (x)

�
dx

de�ned on D. A solution of the Euler equation for L will be the unique solution to the
problem if we are able to �nd a suitable �. The Euler equation and the boundary conditions
are

d

dx
(2y0 (x))� � = 2y00 (x)� � = 0;

y (0) = 0;

@f

@y0
(1) = 2y0 (1) = 0:

The general solution is easily seen to be

y (x; �) = A+Bx+
�

4
x2;

and the boundary conditions imply that A = 0 and B = ��=2, so that

y (x; �) =
�

4
x (x� 2) :

It remains to determine � from the integral constraint:Z 1

0

�

4
x (x� 2) dx = �

4

�
�2
3

�
= 1;

which gives � = �6: The �nal solution is therefore

y� (x) =
3

2
x (2� x) :
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Problem 5

Suppose you are at a gently sloping sand beach, standing in water up to your knees. Running
in water is heavier than running on the shore, so if you want to run to a point on the shore
in the shortest possible time, you could run straight towards the point, as a dog would do,
or alternatively, run the shortest way to the shore, and then on land towards the end point.

Consider the following situation: The shoreline is parallel to the y-axis, and located at
x = 2, with the sea for x < 2 and land for x > 2. Your start-position in the sea is at
(x; y) = (1; 0), and the end point on the shore is located at (2; ye), ye > 0. Your running
speed is given by v (x) = x; so you run twice as fast on the shore, compared to where you
stand now ( v (2) = 2 is also your maximal running speed). We assume that the path may
be described by the function y (x), where y (1) = 0, y (2) = ye � 0. Only paths where
y0 (x) � 0 are of interest since ye > 0.
(a) Show that the variational problem for the total time may be formulated as

min
y2D

J (y) ;

where

J (y) =

Z 2

1

q
1 + y0 (x)2

x
dx;

D =
�
y 2 C1 [1; 2] ; y (1) = 0; y (2) = ye � 0; y0 (x) � 0

	
:

Prove that J is a strictly convex functional on the convex domain D.

(b) Write down the Euler equation for the problem in (a), and show that the general solution
of the equation is always a part of a circle,

(y � a)2 + x2 = r2: (15)

Determine the solution when y (1) = 0 and y (2) = ye = 1.

(c) Consider the optimal solution when ye increases from 0 towards positive values. What
is the (probable) optimal solution when ye �

p
3?

Solution:

(a) The velocity v = ds
dt
, and

ds =
p
1 + y02dx:

The total time is thereforeZ (2;ye)

(1;0)

dt =

Z (2;ye)

(1;0)

ds

v (x)
=

Z 2

1

q
1 + y0 (x)2

x
dx:

Here, y (x) 2 C1 [1; 2] is a su¢ cient condition for J (y) to exist, whereas the boundary
conditions ensure that the start and �nish is OK.

The domain D is convex if y1; y2 2 D implies that y� = �y1 + (1� �) y2 2 D for � 2 [0; 1].
All conditions are clearly satis�ed for y�.
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The integrand is strongly convex, since x > 0 for x 2 [1; 2], and
p
1 + z2 is strictly convex:

d2
p
1 + z2

dz2
=

1

(z2 + 1)
3
2

> 0:

The functional J (y) is then strictly convex since the end-points are �xed (The direct proof
is somewhat cumbersome).

(b) Since there is no y-dependence, the Euler equation becomes

d

dx

@

@y0

�
1

x

q
1 + y0 (x)2

�
=
d

dx

0@1
x

y0 (x)q
1 + y0 (x)2

1A = 0:

Thus,
1

x

y0 (x)q
1 + y0 (x)2

= C1

where C1 is an arbitrary constant. Solving for y0 we obtain

y0 (x) =
xC1p
1� C21x2

;

which leads to the general solution

y (x) =

Z
xC1p
1� C21x2

dx = � 1

C1

q
1� C21x2 + C2:

This may be rewritten as

(y (x)� C2)2 + x2 =
1

C21
;

which de�nes a circle with center at (0; a), a = C2, and radius r = 1=C1,

(y � a)2 + x2 = r2:

The boundary conditions lead to

a2 + 1 = r2;

(1� a)2 + 4 = r2;

with the solution a = 2 and r =
p
5: The solution may alternatively be written as

y (x) = 2�
p
5� x2:

(c) Simple geometry shows that, regardless position of ye 2 [0;1), it is always possible
to �nd a (center at (0; a)) and radius r so as to �t the boundary conditions. However,
the solution passes over land (x > 2) where the speed v (x) increases above 2 and y0 (x)
becomes negative as soon as ye becomes larger than a. This violates our assumptions. By
making a sketch, it is easy to see that this occurs if ye becomes larger than

p
3.
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Alternatively, consider the boundary conditions,

a2 + 1 = r2;

(ye � a)2 + 4 = r2;

giving

a =
3 + y2e
2ye

The condition ye < a leads to ye <
p
3.

The optimal solution for ye >
p
3 thus seems to be to run along the circle

�
y �

p
3
�2
+x2 =

4 to
�
2;
p
3
�
, and then along the shoreline up to ye.
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