TMA 4180 Optimization Theory
Fxam May 21, 2010

Solution with some additional comments
(Revision May 25)

Problem 1

Let
f(x)=32"-12z+y" -2 -5, x=(z,y) € R%.

(a) Compute the gradient and the Hessian of f, and determine the domain D € R? where
the function f is strictly convex.

(b) Solve

miy f (x).

Solution:

(a)

Vfx)= (Gx — 12,49 —4y) ,
SR
0 12y>—4 |’

The function f is strictly convex when both eigenvalues A\; and A\, are strictly positive
(V2f > 0). Since

)\2 = 67
A\ = 12y% — 4,

the domain D will be {(z,y);|y| > 1/v3}.
(b) Consider the necessary first order condition V f = 0, that is,

6r — 12 =0,
4a* — 4y = 0.

Moreover, f (x) — oo when |x| — 00, so solutions exist.

The candidates for solutions are obviously (2,0), (2,1), (2,—1). The last two points are
in the domain D and are then strict local minima. The function values in both points
are equal, f (x*) = —18, and the points are actually global minima since f(2,0) = —17,
and (2,0) is a saddle point (Just checking f (x) for all 3 candidates is also sufficient in the
present case).



Problem 2

In Trust Region iterative methods for the unconstrained problem

zeR™

we consider, for each iteration step, sub-problems of the form

' 1
Jmin, m(p), (1)

where ]
m(p) = f(xx) +b'p+ §p’Bp- (2)

(a) State the Lagrangian and the KKT-equations for the sub-problem in Eq. 1 and 2, and
discuss the solution when we assume that B is positive definite, B > 0.

(Hint: Since B > 0, the equation (B + A )p = —b has a unique solution for all A >0)
(b) How is the size of the trust region adjusted during the iteration?
Solution:

(a) The constraint may be written as ¢ (p) = (A? — p'p) /2 > 0, and the Lagrangian may
therefore be written

/ 1/ /
E(p,A)=f(wk)+bp+§pBP—A(A2—pp) /2,

with the KKT-equations equations
VoL (p,N) = Bp+b+ip=0,

A (A% —p'p) =0,
A% —p'p >0,
A > 0.

(Since the hint should actually have been stated for (B + 2AI) p = —b, a missing factor 1/2
has been ignored during the evaluation).

The first equation,

(B4 M\ )p = —b,
has a unique solution p (\) for all A > 0. If [p (0)| < A, then p* = p (0) is clearly the solution
of the subproblem. Otherwise, if |p(0)] > A, we increase A from 0 until [p(Ao)| = A.
Observe that p (A) — 0 when A — o0, so such a value \g > 0 always exists. Since m (p) is
strictly convex and domain for p is bounded and convex, the solution to the sub-problem
is unique. Verification of the KKT-equations for p* = p ()\g) is straightforward.
(b) If the current approximate solution is xy and xy1 = x) + p*, we consider the ratio

Actual decrease  f (7x) — f (T11)
Estimated decrease  f (z) — m (p*)

p:

If p ~ 1, A is increased for the next subproblem, say A := 2A; if p < 1, A is decreased,
say A := A/2. Otherwise, A is unchanged. Moreover, zj,; = x) + p* unless p is very
small or even negative.



Problem 3

Consider the constrained optimization problem

min f (), (3)
Q={r; ()20, ic}, (4)

where the objective function f(x) and —c; (z) are convex for all i € T.
(a) Show that ) is conver.
(b) Assume that (z*, \*) is a KKT-point,

V.L(x*,\*) =0,
Al (2¥)=0, i €T,
Al >0,i€Z, (5)
x* e Q,

where L (x,\) = f(x) — > ,c7 Nici (x) -
Show that x* is a global minimum for the problem defined in Eqs. 3 and 4.
(c) Let, for (z,y) € R?,

flzy)=(x-2"+(y+2)7

alry) =z—-y+12>0,

e (zy) =y =0, (6)
cs(m,y) =4—(z+1)° =y >0, (7)

and explain why this is a problem of the form above. Find the solution by making a simple
sketch. Show that the solution is a reqular KKT-point.

Solution:

(a) First of all, Q = M7 is convex if each 2; is convex. Let x1,25 € §; and xy =
Oxq + (1 — 0) xq, 0 € [0,1]. Then, since —¢; is convex,

—ci(xg) < —lc; (z1) — (1 —0) ¢; (x9) < 0.

Hence, ¢; (zg) > 0 and Q; is convex.

(b) We observe that £ (z,\*) = f(x) + > ;.7 Af (—ci (v)) is convex since A} > 0. Let = be
an arbitrary point in :

flx) > f(x)+ ZA* (8)
= L(z,\") (9)
> L(a",N) + V. L(x"\) (v — %) (10)
=L (@A) = f(27), (11)
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Figure 1: Sketch of f (x,y), and the constraints forming €2. The obvious solution is indicated
by a star, and the global minimum of f is outside §2.

which is all we need. Alternatively, it is acceptable to say that since £ is convex and
V.L (z*,\*) =0, then z* is a global minimum for £ (x, \*). Hence,

fla) =L@ X)) S L@ A) = f(2)+ ) N (—ei(@) < f(2). (12)

1€

(c) First of all, f is convex since the Hessian is positive definite. The constraints ¢; and ¢y
are linear and convex regardless of signs. Moreover, —c; is strictly convex since it also has
a positive definite Hessian.

The domain €2 in the xy-plane and contour lines of f are sketched in Fig. 1. It is obvious
that the solution is at #* = (1,0)". All constraints are fulfilled, but only c,and c3 are active.
For the gradients, we note that

Ve (X*>/ = j>
Ves (x*) = =2(z* +1)i—2y%j = —4i (13)

Thus, Ve (x*) and Ve (x*) are linearly independent (in fact orthogonal). The solution is
at a regular point (LICQ satisfied) and

VF(x)=2(1-2)i+2(0+2)j=—2i+4j =4Ve, (2*) + %Vc;; (@).  (14)

Also, \* = (O, 4, %)/ > 0, and all KKT-equations are fulfilled.



Problem 4

Let .
F(y) = / Y (x)* d.
Solve the problem :
min F (y),

yeD

D={yeC'0,1]; y(0) =0, y(1) = free},

G@:Aywmzl

Solution:

Since f (z,y,z) = 2? is strongly convex, and y (z) has one fixed boundary, F is strictly

convex. The constraint GG is convex since it is linear. The domain D is convex, and we
introduce the strictly convex Lagrangian

c@hnzié (v @)+ () do

defined on D. A solution of the Euler equation for £ will be the unique solution to the
problem if we are able to find a suitable A. The Euler equation and the boundary conditions
are

(2 (@) - A =2/ (£) = A =0,

of
oy’

The general solution is easily seen to be

A
y(x,)\):A+Bx+Zx2,

and the boundary conditions imply that A =0 and B = —\/2, so that

y(x,)\)zgx(x—@.

It remains to determine A from the integral constraint:

! 2
/ ém(m—2)dac:§<——) =1,
. 4 1\ 3

which gives A = —6. The final solution is therefore

y*(m):%m(Z—x).



Problem 5

Suppose you are at a gently sloping sand beach, standing in water up to your knees. Running
i water s heavier than running on the shore, so if you want to run to a point on the shore
in the shortest possible time, you could run straight towards the point, as a dog would do,
or alternatively, run the shortest way to the shore, and then on land towards the end point.

Consider the following situation: The shoreline is parallel to the y-axis, and located at
x = 2, with the sea for x < 2 and land for © > 2. Your start-position in the sea is at
(z,y) = (1,0), and the end point on the shore is located at (2,y.), y. > 0. Your running
speed is given by v (x) = x, so you run twice as fast on the shore, compared to where you
stand now (v (2) = 2 is also your mazimal running speed). We assume that the path may
be described by the function y(x), where y (1) = 0, y(2) = y. > 0. Only paths where
y' (x) > 0 are of interest since y. > 0.

(a) Show that the variational problem for the total time may be formulated as

min.J (y),

yeD

) = /12 yiryer

D={yeC'1,2]; y(1) =0, y(2) =y > 0,y () > 0}.

where

Prove that J is a strictly convex functional on the convexr domain D.

(b) Write down the Euler equation for the problem in (a), and show that the general solution
of the equation is always a part of a circle,

(y—a)® + 2% =% (15)

Determine the solution when y (1) =0 and y (2) = y. = 1.

(c) Consider the optimal solution when y. increases from 0 towards positive values. What
is the (probable) optimal solution when y, > /37

Solution:

ds

abo and

(a) The velocity v =
ds = /1 + y?dx.

The total time is therefore

(2,5e) 2we) g 241+ (:10)2
[ e[ [
( ( 1 z

1,0) 1,00 U (x) B

Here, y (z) € C'[1,2] is a sufficient condition for J (y) to exist, whereas the boundary
conditions ensure that the start and finish is OK.

The domain D is convex if y;,y2 € D implies that yy = Oy; + (1 — 0) yo € D for 6 € [0, 1].
All conditions are clearly satisfied for 1.



The integrand is strongly convex, since = > 0 for z € [1,2], and /1 + 22 is strictly convex:

PV1+22 1

> 0.
dz? (22 + 1)%

The functional J (y) is then strictly convex since the end-points are fixed (The direct proof
is somewhat cumbersome).

(b) Since there is no y-dependence, the Euler equation becomes

d o (1 ey d [l y(2) _
@a—y(;\/”“@)—@ Py el Bk

Thus,

Ly,

T+ (@)

where C] is an arbitrary constant. Solving for ¢’ we obtain
y (z) = I—Cl,
V1 — C#az?

which leads to the general solution
.I'Cl 1
2)= | ——dr = ——1/1 — C?22 + (.
v (@) / 1 — C%z? & ' ’

This may be rewritten as
1

=,
i

which defines a circle with center at (0,a), a = Cy, and radius r = 1/C,

(y(z) — Co)* +2° =
(y —a)® +2® =12
The boundary conditions lead to
a?+1= r2,
(1—a)2+4:r2,
with the solution @ = 2 and r = /5. The solution may alternatively be written as
y(r)=2—+5— a2

(c) Simple geometry shows that, regardless position of y. € [0,00), it is always possible
to find a (center at (0,a)) and radius r so as to fit the boundary conditions. However,
the solution passes over land (z > 2) where the speed v (z) increases above 2 and v’ (x)
becomes negative as soon as y. becomes larger than a. This violates our assumptions. By
making a sketch, it is easy to see that this occurs if y. becomes larger than v/3.

7



Alternatively, consider the boundary conditions,

a?+1=r2
(ye — a)2 +4 =172
giving
3+ 2
a=—"=°
29,

The condition 7. < a leads to 3. < v/3.

The optimal solution for y, > v/3 thus seems to be to run along the circle (y — \/3)2 + 22

4 to (2, \/g), and then along the shoreline up to ..



