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Contact during exam:
Anne Kværnø tel. 92663824

Exam in TMA4180 Optimization Theory

Monday June 6, 2011
Tid: 09.00 – 13.00

Auxiliary materials: Simple calculator (Hewlett Packard HP30S or Citizen SR-270X)
Rottmann: Matematisk formelsamling

Problem 1

a) Find all minima (in R2) of the function

f(x, y) = x4 − 2x2 + 3y2 − 12y.

List all the general results you are using.

b) Formulate the steepest descent method for this problem (but you do not have
to perform any iterations).

Estimate the drop in the error per iteration (expressed in terms of the appro-
priate norm) near a global minimum of the problem given in a).

Problem 2 Consider a differentiable function f(x) where f : Rn → R. What
do we mean by a convex function? Write down the definition of the tangent plane
Tx0(x) of f in a point x0. Assume that f has the property that f(x) ≥ Tx0(x) for
all points x0 and x. Show that the function f is convex.
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Problem 3 Given the problem

min y − x

subject to

−x+ y ≥ 0

x+ y ≥ 0

2x2 + y − 1 ≥ 0

−y + 2 ≥ 0

a) State the KKT conditions, and show that x? = −0.5, y? = 0.5 is a KKT-point
for the problem.

b) Is (x?, y?) a minimum? Justify your claim.

Problem 4 Given the linear problem:

max x1 + 2x2

subject to

−1 ≤ x2 − x1 ≤ 1

0 ≤ x1 ≤ 2

0 ≤ x2

a) Plot the feasible region, and solve the problem graphically.

b) Bring the LP problem over to standard form, that is

min cTx,

Ax = b, A has full row rank,
x ≥ 0.

Problem 5 Given the functional

F (y) =

∫ 1

0

(
y(x)2 + x2y′(x)

)
dx

on D = {y ∈ C[0, 1] : y(0) = 0, y(1) = 1}.

a) Find the function y0(x) that minimize F on D.

b) Explain what we mean with a strictly convex functional. Prove that F is
strictly convex.



Page 3 of 3

Problem 6 You and some friends are planning to do some kayaking in the fjord
after the exam. You will start from Grillstadsfjæra, your friends from Hansbakkfjæra
(two popular beaches in Trondheim), and the group will continue from there. So
you will have to paddle a little extra, but would not like to waste too much energy
on this. The distance in a straight line between Grillstadfjæra and Hansbakkfjæra
is l, and you should paddle it on time T . At that time, your friends are already in
the water, ready to start, so you do not have to make a stop at Hansbakkfjæra.

Assuming that the energy consumption depends on the velocity v(t) and the accel-
eration v̇(t) = dv(t)/dt, it may be expressed as

F (v) =

∫ T

0

(
v̇(t) + αv(t)

)2
dt

where α > 0 is the parameter describing the water resistance. The problem is then
to minimize F on

D = {v ∈ C1[0, T ] : v(0) = 0}

under the constraint

G(v) =

∫ T

0

v(t)dt = l.

Here, l and T are given constants.

a) Set up the Euler-Lagrange equation for this problem, including boundary con-
ditions.

b) Let α = 1 and find the velocity v0(t) that solves the problem above. Is the
solution unique? If so, why?
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Exam in TMA4180 Optimization Theory
spring 2011
Solutions

Not yet proofread

Problem 1

a) First order necessary condition for a minimum is ∇f(x, y) = 0, Thus

∇f(x, y) =

(
4x3 − 4x
6y − 12

)
= 0

gives the possible minima

(x, y) = (0, 2), (x, y) = (1, 2), (x, y) = (−1, 2)

The second order necessary condition for a minimum is

∇f(x, y) = 0, ∇2f(x, y) ≥ 0

which in our case becomes:

∇2f(x, y) =

(
12x2 − 4 0

0 6

)
≥ 0

which clearly is not satisfied for (x, y) = (0, 2). Finally, the sufficient condition
for a minimum is ∇f(x, y) = 0 and ∇2f(x, y) > 0, which is satisfied for
(x, y) = (1, 2) and (x, y) = (−1, 2).

We have f(1, 2) = f(−1, 2) = −13. Further, f(x, y) → +∞ as x, y → ±∞,
and we can conclude that(1,2) and (-1,2) are global minima.

b) One iteration of the steepest descent method for min f(x), f : Rn → R is in
general given by

pk = −∇f(xk), αk = arg min
α>0

f(xk + αpk), xk+1 = xk + αkpk.
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In a practical algorithm, αk is usually some approximation to the scalar min-
imization problem, satisfying the Wolfe-conditions:

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)
Tpk

∇f(xk + αkpk)
Tpk ≥ c2∇f(xk)

Tpk.

for 0 < c1 < c2 < 1. There are also alternative conditions, see Nocedal and
Wright.

In our case, we get:

pk =

(
−4x3k + 4xk
−6yk + 12

)
, ∇f(xk)

Tpk = 16x2k(x
2
k − 1)2 + 36(yk − 2)2.

If we denote the Hessian near the gloal minima by A, the error estimate is
given by

‖xk+1 − x?‖A
‖xk − x?‖A

≤ κ(A)− 1

κ(A) + 1
.

In our case,

A =

(
8 0
0 6

)
, κ(A) = 8/6 = 4/3

so
‖xk+1 − x?‖A
‖xk − x?‖A

≤ 1

7
.

Problem 2 A function is convex if for all x, y ∈ Rn we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), θ ∈ [0, 1]. (1)

A tangent plane of f in x0 is given by

Tx0(x) = f(x0) +∇f(x0)(x− x0).

Given x, y ∈ Rn, and xθ = θx+ (1− θ)y. Then

f(xθ) +∇f(xθ)(x− xθ) ≤ f(x)

f(xθ) +∇f(xθ)(y − xθ) ≤ f(y)

Multiply the first inequality by θ, the second by 1− θ and add them together, and
what we get is (1).

Problem 3

a) Let L(x, λ) = f(x)−
∑4

i=1 λici(x). A point x? is a KKT point if x? ∈ Ω (that
is, all the constraints are satisfied), the LICQ condition is satisfied, and

∇xL(x?, λ?) = 0

λ?i ci(x
?) = 0, ∀i ∈ E ∪ I
λ?i ≥ 0, ∀i ∈ I
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Our problem is given by
min f(x) = y − x

subject to

c1(x, y) = −x+ y ≥ 0

c2(x, y) = x+ y ≥ 0

c3(x, y) = 2x2 + y − 1 ≥ 0

c4(x, y) = −y + 2 ≥ 0

So E = ∅, I = {1, 2, 3, 4}.
For x = −0.5, y = 0.5 we get

c1 = 1 c2 = 0, c3 = 0, c4 = 3/2

so (x, y) ∈ Ω. The constraints c1 and c4 are passive constraints, and from the
second KKT condition, this implies that λ1 = λ4 = 0. Further, the active
constraints satisfies

∇c2(x, y) = [1, 1]T , c3(x, y) = [4x, 1]T = [−2, 1]T .

which are linear independent, so the LICQ condition is satisfied. The first
KKT condition becomes:(

−1
1

)
= λ2

(
1
1

)
+ λ3

(
−2
1

)
with solutions λ2 = 1/3 and λ3 = 2/3, satisfying the last KKT condition. So
yes, (-0.5,0.5) is a KKT point for the given problem.

b)

The feasible directions at the KKT point is d = [α, 1]T with −1 ≤ α ≤ 0.5
(why?). So ∇fTd = −1 + α > 0 in all feasible directions, and the KKT point
is clearly a minimum.

But it is only a local minimum, not a global one.
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Problem 4

a)

b)
min −x1 − 2x2

subject to

−x1 + x2 − x3 = −1

−x1 + x2 + x4 = 1

x1 − x5 = 0

x1 + x6 = 2

x2 − x7 = 0

xi ≥ 0, i = 1, 2, . . . , 7.

Problem 5

a) The Euler-Lagrange equation becomes

d

dx
x2 = 2y ⇒ 2x = 2y ⇒ y0(x) = x ∈ D

b) A functional J : D→ R is strictly convex if

J(y + v)− J(y) ≥ δJ(y; v), ∀y, y + v ∈ D

with equality only if v = 0. Here δJ(y; v) is the Gâteaux variation of J .
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In our case, we get

δF (y; v) =
d

dε
F (y + εv)|ε=0 =

∫ 1

0

(2yv + x2v′) dx

=

∫ 1

0

2yv dx+ x2v|10 −
∫ 1

0

2xv dx = 2

∫ 1

0

(y − x) dx

since v(0) = v(1) = 0, (remember y + v ∈ D). Further,

F (y + v)− F (y) =

∫ 1

0

(y2 + 2yv + v2 + x2(y′ + v′)− y2 − x2y′) dx

= δF (y; v) +

∫ 1

0

v2 dx.

The last term is obviously ≥ 0 and equal to zero only if v = 0.

Alternatively, see Theorem 3.5 in Troutmann,
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Problem 6

a) The extended functional becomes

F̃ (y) =

∫ T

0

(
(v̇ + αv)2 + λv

)
dt.

The Euler-Lagrange equation is

2
d

dt
(v̇ + αv) = 2α(v̇ + αv) + λ

or
v̈ − α2v =

λ

2
.

with boundary conditions

v(0) = 0, v̇(T ) + αv(T ) = 0.

The last one is the open end condition f̃z(T ) = 0. The Lagrange multiplier λ
is found from the constraint G(v) = l.

b) With α = 1 this becomes:

v̈ − v =
λ

2
⇒ v(t) = C1e

−t + C2e
t − λ

2
.

From the boundary conditions we get

C1 =
λ

2

(
1− 1

2
e−T
)
, C2 =

λ

4
e−T .

Finally,

G(v) =

∫ T

0

v(t) dt = λ

(
3

4
− e−T +

1

4
e−2T − 1

2
T

)
= l

Putting all this toghether, we end up with someting like

v0(t) =
l
(
−2 e−t+2T + e−t+T − eT+t + 2 e2T

)
−3 e2T + 4 eT − 1 + 2Te2T

The solution is unique since f clearly is strictly convex and g is linear, see
Theorem 3.16 in Troutman.


