
TMA 4180 OPTIMIZATION THEORY
June 4, 2012

Solution with additional comments
(PRELIMINARY VERSION)

1 Problem

Let

f (x; y) =
x2

2
� 1

12
x4 + xy + y2; (x; y) 2 R2: (1)

(a) Find the domain Dc � R2 where f is convex.
(b) Determine all local and global minima of f in the domain

D2 =
�
(x; y) 2 R2; x � 2; y 2 R

	
: (2)

Solution:

The gradient of f is

rf (x; y) =
�
�1
3
x3 + x+ y; x+ 2y

�
; (3)

and the Hessian

r2f (x; y) =

�
1� x2 1
1 2

�
: (4)

(a) The function is convex in all points where r2f (x; y) � 0. This occurs for

0 � 1� x2; (5)

0 � 2; (6)

0 � 2
�
1� x2

�
� 1: (7)

The third and most restrictive inequality is valid for x2 � 1=2, that is, x 2
�
�1=

p
2; 1=

p
2
�
.

Thus,
Dc =

�
(x; y) 2 R2; x2 � 1=2; y 2 R

	
: (8)

Alternatively, the smallest eigenvalue of r2f (x; y) is

�min =
3� x2
2

� 1
2

p
x4 + 2x2 + 5; (9)

which is non-negative for x2 � 1=2.
(b)

Stationary points are solutions of rf (x; y) = 0, or

�1
3
x3 + x+ y = 0;

x+ 2y = 0: (10)
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Solutions:
(0; 0) ;

�
�
p
3=2;

p
3=8
�
;
�p

3=2;�
p
3=8
�
: (11)

Only (0; 0) is within Dc, and since it is not a boundary point, r2f (0; 0) is positive de�nite
and (0; 0) a local minimum. The other two stationary points, in D2 but outside Dc, are
saddle points.

We also need to check the boundary x = 2. Along the boundary

f (2; y) = y2 + 2y +
2

3
; (12)

with a minimum y0 = �1. We then consider the gradient in (2;�1):

rf (2;�1) =
�
�5
3
; 0

�
: (13)

Since rf (x; y) � d > 0 for all feasible directions into D2, and y0 is clearly a minimum along
the boundary, we conclude that (2;�1) is also a local minimum.
Obviously, there are no global minima for x � 2, since f (x; 0) = x2

2
� 1

12
x4 ! �1 when

x! �1:
In conclusion, (0; 0) and (2;�1) are local minima, but there are no global minima in D2:

2 Problem

(a) Write down the Karush-Kuhn-Tucker (KKT) equations for the problem

min
x2Rn

f (x)

ci (x) = 0; i 2 E ; (14)

ci (x) � 0; i 2 I;

and explain what happens if f (x) and f�ci (x)gi2I are convex and all ci; i 2 E , are linear.
(b) State the KKT equations for the LP problem

min
x2R2

c0x;

Ax = b;

0 � x; (15)

when (�; s) are multipliers for equality and inequality constraints, respectively. Show that
the corresponding dual problem

max
�
b0�;

A0� � c; (16)

has identical KKT equations.
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(c) Determine the minimum value of

2x1 + 3x2 + 3x3 + 2x4 (17)

when

x1 + 3x2 + x3 + 0 = 4; (18)

2x1 + x2 + x3 + x4 = 1; (19)

x1; x2; x3; x4 � 0: (20)

by solving the dual problem graphically.

Solution:

(a) We start by forming the Lagrange function, L (x; �) = f (x)� �0c (x). Then the KKT
equations are

(rxL)
0 = rf �

X
i2fE;Ig

�irci = 0;

ci (x) = 0; i 2 E ;
ci (x) � 0; i 2 I; (21)

�0c (x) = 0; i 2 I [ E ; (22)

�i � 0 for i 2 I: (23)

If the objective function f (x) and f�ci (x)gi2I are convex, and all ci; i 2 E , are linear,
the Lagrangian will be convex if also �i � 0; i 2 I. A KKT-point fx�; ��g, where ��i � 0
for i 2 I, is then a global minimum since L (x; ��) is convex, f (x) � L (x; ��), and
f (x�) = L (x�; ��).

(b) In the present case, the Lagrange function is

L (x; �) = c0x� �0 (Ax� b)� s0x; (24)

and the KKT equations are

(rxL)
0 = c� A0� � s = 0;

Ax� b = 0; 0 � x;
s0x = 0;

s � 0: (25)

Since s = c� A0�, this may be simpli�ed to

c� A0� � 0;
Ax� b = 0;

x � 0: (26)

(c� A0�)0 x = 0; (27)

We write the dual problem as

min
�
�b0�;

0 � c� A0� (28)
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and use x as the Lagrange multiplier. Then

L (�; x) = �b0� � x0 (c� A0�)

and

r�L (�; x)
0 = �b+ Ax = 0

(c� A0�)0 x = 0;
c� A0� � 0;

x � 0; (29)

which are identical to the KKT-equations for the standard problem.

(c) The dual problem is

max
�
b0�;

A0� � c; (30)

that is, 2664
1 2
3 1
1 1
0 1

3775� �1�2
�
�

2664
2
3
3
2

3775 ; b = � 41
�
: (31)

We follow the hint and make a drawing, see Fig. 1. Unfortunately, the stated b-vector does
not result in a bounded solution. As shown in Fig. 1, the feasible domain is unbounded and
consists of all points below the lowest of u1, u2 and u4. Moving down along u2 makes the
objective as large as we want. This is turn means that the primal problem has no feasible
points, and the primal problem has no solution.

This was really not the intention!

Again looking at the plot, we observe that for b = (�; 1) to have a solution including the
crossing of u1 and u2, it is necessary that 1=2 � � � 3, and 4 is outside this interval. The
solution will include the crossing of u1 and u4 if 0 � � � 1=2. This covers all possibilities.

3 Problem

Consider the following constrained optimization problem

min
x2Rn

x0Cx

2

when Ax = b; (32)

x 2 Rn, C 2 Rn�n, A 2 Rr�n; and b 2 Rr; r < n. Assume that C is positive de�nite
(C > 0), and rank (A) = r.

(a) Outline at least one of several methods for solving the problem.
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Figure 1: The feasible domain is below the minimum of u1, u2 and u4, and hence unbounded.
Moving down along u2, it follows that the objective may be as large as we wish.

(b) Solve the problem

min
x2R3

�
x21 + 2x

2
2 + 3x

2
3

2

�
x1 + x2 + x3 � 3; (33)

using any suitable method.

Solution:

(a) The problem is a quadratic optimization problem with equality constraints. The matrix
C is non-singular and A has full row rank.

(i) Elimination of variables

Bring Ax = b over to the equivalent reduced Echelon form. This changes A and b so that

~Ax = [Ir�r N ]

�
xI
xN

�
= ~b: (34)

Eliminate xI from the problem by introducing

x =

�
b�NxN
xN

�
(35)

and obtain an unconstrained quadratic problem in xN (Of course, this is equivalent to
solving for xI , that is, express xI in terms of xN and b).

(ii) The null-space method

Since A has full row rank, there are always solutions to Ax = b: Assume that one solution
is x0. Then all solutions have the form x = x0+Zu, where Z contains a basis for N (A) and
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u 2 Rn�r. Introduce x = x0+Zu into x0Cx and solve the unconstrained quadratic problem
for u�. Note that the quadratic part is u0Z 0CZu, where Z 0CZ > 0, and the solution, u�, is
thus unique.

(iii) Solving the KKT equations

The KKT equations are

rL (x; �)0 = Cx� A0� = 0; (36)

Ax = b; (37)

which we may write as �
C �A0
A 0

� �
x
�

�
=

�
0
b

�
(38)

The existence of a unique solution (x�; ��) follows from Thm. 16.1 in N&W. However, in
the present case, the �rst equation gives

x = C�1A0�; (39)

and the 2nd gives �:
A
�
C�1A0�

�
= b; (40)

that is,

�� =
�
AC�1A0

��1
b;

x� = C�1A0��: (41)

(iv) The Moore-Penrose inverse

A method that has not been discussed in the lectures is to change variables to y = C1=2x,
since this transforms the problem into

min kyk2 ;
AC�1=2y = b: (42)

By the �least norm�-property of the Moore-Penrose inverse,

y� =
�
AC�1=2

�+
b: (43)

(b) Since the unique unconstrained minimum (x = 0) is outside the feasible domain,
the inequality constraint has to be active. The most elementary way is to eliminate one
unknown from the problem, say x3 = 3�x1�x2:We then have to consider the unconstrained
minimum of

g (x1; x2) = x21 + 2x
2
2 + 3 (3� x1 � x2)

2 : (44)

Since the problem is convex, we only go for rg (x1; x2) = 0, that is,

@g

@x1
= 2x1 � 6 (3� x1 � x2) = 0; (45)

@g

@x2
= 4x2 � 6 (3� x1 � x2) = 0; (46)
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and

4x1 + 3x2 = 9;

3x1 + 5x2 = 9: (47)

The solution is

x�1 =
18

11
; (48)

x�2 =
9

11
; (49)

x�3 = 3� x�1 � x�2 =
6

11
: (50)

An even simpler alternative is to use the KKT equations for the equality constrained
problem,

x1 � � = 0;
2x2 � � = 0;
3x3 � � = 0;

x1 + x2 + x3 = 3; (51)

with the obvious solution �� = 18
11
(yes, it should be non-negative) and the same solution

for x� as above.

4 Problem

A biker moves because she/he is able to produce a thrust (force) U against the ground.
However, due to friction in the body and the bike, this force is a nonlinear function of
power P (t) produced by the biker. We shall assume that u _ P 1=2, where u is produced
force measured per mass unit. The biker wants to go up a hill with slope � and length L
in a certain time T with minimum energy consumption.

The velocity y(t) follows from Newton�s Law,

_y(t) =
dy (t)

dt
= u(t)� g sin�; (52)

where g is the acceleration of gravity. The total energy consumption,
R T
0
P (t)dt, leads to

the functional

J(y) =

Z T

0

u2(t)dt =

Z T

0

( _y(t) + g sin�)2 dt: (53)

The biker starts with velocity y (0) = 0, and since the distance to be covered is L,Z T

0

y(t)dt = L: (54)
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With suitable units, the problem may now be written

min
y2D

J(y) = min
y2D

Z T

0

( _y(t) + 1)2 dt;

D =
�
y 2 C2 [0; T ] ; y (0) = 0

	
; (55)Z T

0

y(t)dt = 1:

(a) Show that J(y) as well as the Lagrangian are strictly convex.

(b) Solve the problem for the two situations:

(i) y (0) = y (T ) = 0;
(ii) y (0) = 0; y (T ) = free.

(56)

(c) Compute the minimum energy consumption as a function of T for situation (i). The
corresponding minimum energy consumption for situation (ii) is

J
�
y�(ii)

�
=
3 (T 2 + 2)

2

4T 3
: (57)

Discuss the optimal solutions.

Solution:

(a) The integrand f (x; y; z) = (z + 1)2 is strongly convex since

(z + w + 1)2 � (z + 1)2 = 2 (z + 1)w + w2 = @ (z + 1)2

@z
w + w2: (58)

With one �xed endpoint, this implies that the functional J (y) =
R T
0
( _y(t) + 1)2 dt is strictly

convex. Moreover, G (y) =
R T
0
y(t)dt is linear and hence convex. Thus,

L (y; �) = J (y) + �G (y) =

Z T

0

�
( _y(t) + 1)2 + �y (t)

	
dt; (59)

is strictly convex regardless the value of �.

(b) The (unique) solution is found from �L (y (t; ��) ; ��) = 0, where �� needs to be adjusted
so that y� (t; ��) satis�es the constraint.

The Euler Equation (EE) for the Lagrangian is

d

dt

@L

@ _y
� @L
@y

=
d

dt
2 ( _y(t) + 1)� � = 2�y � � = 0: (60)

and the general solution, with y (0) = 0, becomes

y (t) = Bt+
�

4
t2: (61)

For situation (i), y (T ) = 0; and B = �T�
4
. The � to use follows from the constraintZ T

0

y(t; �)dt =

Z T

0

�
�T�
4
t+

�

4
t2
�
dt

=
�

4

Z T

0

�
�Tt+ t2

�
dt = � 1

24
T 3� = 1: (62)

8



Hence
�� = � 24

T 3
(63)

and
y�(i) =

6

T 3
t (T � t) : (64)

For a free velocity at the end point we need to apply the natural boundary condition,

@f (y; _y)

@ _y
(T ) = 2 ( _y (T ) + 1) = 0: (65)

Introducing Bt+ �
4
t2, we obtain

B +
�

2
T + 1 = 0; (66)

and

y(ii) (t; �) = �
�
�

2
T + 1

�
t+

�

4
t2 (67)

We �nally need to ful�l the constraint:Z T

0

y(t; �)dt =

�
��
2
T � 1

�
T 2

2
+
�

4

T 3

3
= 1; (68)

giving

� = �3 (T
2 + 2)

T 3
; (69)

and

y�(ii) (t) =

�
��
2
T � 1

�
t+

�

4
t2

=

�
3

T 2
+
1

2

�
t� 3

4T

�
2

T 2
+ 1

�
t2: (70)

(c) The total energy consumption for situation (i) is given by

J
�
y�(i)
�
=

Z T

0

( _y(t) + 1)2 dt

=

Z T

0

�
6

T 3
(T � 2t) + 1

�2
dt

=
1

T 3
�
T 4 + 12

�
: (71)

For situation (ii), the similar result is

J
�
y�(ii)

�
=

3

4T 3
�
T 2 + 2

�2
: (72)

With the additional freedom in the second situation, we expect that

J
�
y�(ii)

�
� J

�
y�(i)
�
; (73)
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Figure 2: Minimum energy consumption as functions of T for situation (i), black curve, and
(ii), red curve. Curves coincide at T =

p
6. See text about a better solution for T >

p
6.

and indeed

J
�
y�(i)
�
� J

�
y�(ii)

�
=
1

T 3
�
T 4 + 12

�
� 3

4T 3
�
T 2 + 2

�2
=
(T 2 � 6)2

4T 3
� 0: (74)

Actually, the solutions coincide for T =
p
6. We observe, somewhat surprisingly, that

limT!0 J (y
�) = limT!1 J (y

�) =1 for both solutions. The minimum occurs for T =
p
6:

The velocity y (t) is parabolic, and the terminal velocity for case (ii) comes out negative
when T >

p
6. The solution is therefore not particularly interesting since there is no gain

of energy into the body from going downhill (!). According to the above, it appears that
the best, if T >

p
6, is just to apply the optimal solution for T =

p
6, and then relax for

the remaining time. We observe that this otherwise physically acceptable solution is not a
solution of the Euler equation. The energy consumptions are shown in Fig. 2.
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