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Problem 1 Consider a smooth function f : R?> — R defined by the formula
fla,y) =2(z = 3y)* + 4"

a) Find the point of global minimum of f over R?.
b) Determine whether the function f is convex or not.

c) Starting from the point (z,y) = (3,1) take one step of the steepest de-
scent algorithm with linesearch. Use backtracking (Armijo) linesearch (Al-
gorithm 3.1 in Nocedal and Wright). Take the initial step length & = 1,
sufficient decrease parameter ¢ = 0.25, and contraction factor p = 0.1.

Problem 2 De Finetti in 1949 considered the following class of functions:

A function f : R™ — R is called quasi-convez, if for every z1,x, € R™ and every
0 < XA <1 it holds that

f Az 4+ (1 = AN)z2) < max{ f(z1), f(x2) }.

a) Show that every convex function on R™ (not necessarily differentiable) is also
quasi-convex.

b) Show that a function f : R™ — R is quasi-convex if and only if for every
a € R the lower-level set S, = {z € R" | f(z) < a'} is convex.

Consider a function f : R — R given by the formula

0 0<x <1,
1 otherwise.

c) Show that f is quasi-convex, but not convex. Additionally, show that a
point of local minimum of a quasi-convex function is not necessarily a point
of global minimum.
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Problem 3 Consider the following variation of the linear conjugate gradient
(CG) algorithm for minimizing convex quadratic functions ¢ : R" — R, ¢(z) =
2T Ax/2 — bz, Aec RV AT = A b e R™

Given: initial point zg € R"

Initialization: put k =0, pp = —V¢(xy).

while Vo(zr) % 0 do
Linesearch: «ay := exact linesearch for ¢ along py
Update solution approximation: xxy; = T + Pk
Update search direction: pyi1 = —Vé(Tryi1) + Brr1Dk
Proceed to next iteration: k =k + 1

end while

In order to update the search direction (step 6), we need to calculate Sg1. Un-
like in the usual linear CG, in our algorithm we calculate ;.1 from the relation
p£+1pk = 0. Show that the resulting modified CG algorithm is in fact exactly the
same as the steepest descent algorithm with exact linesearch.

Problem 4 Consider a set 2 C R? defined by two inequality constraints:
Q={(z,y) eR* |25 — 2> — 4> > 0,42 — 3y >0}

a) Using a suitable set of linear inequalities and equalities describe the following
cones for Q at (z,y) = (3,4): (i) cone of linearized feasible directions; (ii)
the tangent cone.

b) Determine all values of the parameter 7, for which the point (z,y) = (3,4)
is an optimal solution for the following constrained optimization problem:

minimize x4+ Ty,
()

subject to (x,y) € Q.
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Problem 5 Consider the following constrained optimization problem in two
real variables z, y:

a)

b)

C L s 2
minimize x,Yy) = =(x° + ,
nimize  f(z,y) = 5 (2" +y7) 0

subject to x —y—1=0.

Find the globally optimal solution (z*,y*) for (1) (graphically, if you like).
Also find the value of the Lagrange multiplier A* associated with the con-
straint at the globally optimal solution.

Formulate the unconstrained minimization problem corresponding to the ap-
plication of the quadratic penalty method applied to (1). Solve the resulting
unconstrained minimization problem for the penalty parameter u = 2.

Note: (x —y—1)? =2+ y* +1— 2z + 2y — 2ay.

State the augmented Lagrangian penalty function corresponding to (1) and
some unspecified Lagrange multiplier A and penalty parameter p > 0. Find
the unconstrained global minimum of the augmented Lagrangian correspond-
ing to A = 0.5, p = 2.

Compare the accuracy of the obtained approximate solutions to (1) with
those obtained in the previous step.



