
Department of Mathematical Sciences

Examination paper for TMA4180 Optimization Theory

Academic contact during examination: Anne Kværnø

Phone: 92 66 38 24

Examination date: June 06, 2014

Examination time (from–to): 09.00–13.00

Permitted examination support material:

• Approved simple calculator.

• Rottmann: Matematisk formelsamling.

• Nocedal & Wright: Numerical Optimization + errata.

• Printed lecture notes for the course.

Language: English

Number of pages: 3

Number pages enclosed: 0

Checked by:

Date Signature



TMA4180 Optimization Theory June 06 2014 Page 1 of 3

Problem 1 Consider a smooth function f : R2 → R defined by the formula
f(x, y) = 2(x− 3y)2 + y4.

a) Find the point of global minimum of f over R2.

b) Determine whether the function f is convex or not.

c) Starting from the point (x, y) = (3, 1) take one step of the steepest de-
scent algorithm with linesearch. Use backtracking (Armijo) linesearch (Al-
gorithm 3.1 in Nocedal and Wright). Take the initial step length ᾱ = 1,
sufficient decrease parameter c = 0.25, and contraction factor ρ = 0.1.

Problem 2 De Finetti in 1949 considered the following class of functions:

A function f : Rn → R is called quasi-convex, if for every x1, x2 ∈ Rn and every
0 ≤ λ ≤ 1 it holds that

f (λx1 + (1− λ)x2) ≤ max{ f(x1), f(x2) }.

a) Show that every convex function on Rn (not necessarily differentiable) is also
quasi-convex.

b) Show that a function f : Rn → R is quasi-convex if and only if for every
α ∈ R the lower-level set Sα = {x ∈ Rn | f(x) ≤ α } is convex.

Consider a function f : R→ R given by the formula

f(x) =

0 0 ≤ x ≤ 1,
1 otherwise.

c) Show that f is quasi-convex, but not convex. Additionally, show that a
point of local minimum of a quasi-convex function is not necessarily a point
of global minimum.
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Problem 3 Consider the following variation of the linear conjugate gradient
(CG) algorithm for minimizing convex quadratic functions φ : Rn → R, φ(x) =
xTAx/2− bTx, A ∈ Rn×n, AT = A, b ∈ Rn:

1: Given: initial point x0 ∈ Rn

2: Initialization: put k = 0, p0 = −∇φ(x0).
3: while ∇φ(xk) 6≈ 0 do
4: Linesearch: αk := exact linesearch for φ along pk
5: Update solution approximation: xk+1 = xk + αkpk
6: Update search direction: pk+1 = −∇φ(xk+1) + βk+1pk
7: Proceed to next iteration: k = k + 1
8: end while

In order to update the search direction (step 6), we need to calculate βk+1. Un-
like in the usual linear CG, in our algorithm we calculate βk+1 from the relation
pTk+1pk = 0. Show that the resulting modified CG algorithm is in fact exactly the
same as the steepest descent algorithm with exact linesearch.

Problem 4 Consider a set Ω ⊂ R2 defined by two inequality constraints:

Ω = { (x, y) ∈ R2 | 25− x2 − y2 ≥ 0, 4x− 3y ≥ 0 }.

a) Using a suitable set of linear inequalities and equalities describe the following
cones for Ω at (x, y) = (3, 4): (i) cone of linearized feasible directions; (ii)
the tangent cone.

b) Determine all values of the parameter π, for which the point (x, y) = (3, 4)
is an optimal solution for the following constrained optimization problem:

minimize
(x,y)

x+ πy,

subject to (x, y) ∈ Ω.
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Problem 5 Consider the following constrained optimization problem in two
real variables x, y:

minimize
(x,y)

f(x, y) = 1
2(x2 + y2),

subject to x− y − 1 = 0.
(1)

a) Find the globally optimal solution (x∗, y∗) for (1) (graphically, if you like).
Also find the value of the Lagrange multiplier λ∗ associated with the con-
straint at the globally optimal solution.

b) Formulate the unconstrained minimization problem corresponding to the ap-
plication of the quadratic penalty method applied to (1). Solve the resulting
unconstrained minimization problem for the penalty parameter µ = 2.
Note: (x− y − 1)2 = x2 + y2 + 1− 2x+ 2y − 2xy.

c) State the augmented Lagrangian penalty function corresponding to (1) and
some unspecified Lagrange multiplier λ and penalty parameter µ > 0. Find
the unconstrained global minimum of the augmented Lagrangian correspond-
ing to λ = 0.5, µ = 2.
Compare the accuracy of the obtained approximate solutions to (1) with
those obtained in the previous step.


