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Solution with additional comments

1 Problem

(a) Which axioms about nature form the basis of dimensional analysis? What is the content
of Buckingham�s-Pi theorem, and how can you apply the theorem to show that the period
of a mathematical pendulum is independent of its mass?

(b) In forestry it is necessary to estimate the volume ( v) of trees by measuring the diameter
at the base and their height (h) (this may be carried out by triangularization). An example
in Minitab suggests the following regression model for American cherry trees:

v1=3 = �0 + �1d+ �2h+ �3d
2 (1)

(�i, i = 0; � � � ; 3 are regression coe¢ cients). Show that dimensional analysis instead sug-
gests a formula �1 = � (�2). Give examples of the form of � for �simple�trees.

Solution:

Buckingham:

� All relations have to be dimensionally correct

� No relation depends on a particular set of units

If there is a relation
� (R1; � � � ; RN) = 0; (2)

there is also an equivalent relation

	(�1; � � � ; �N�r) = 0; (3)

where �1; � � � ; �N�r are dimensionless combinations formed by using r core variables with
independent dimensions, and where r also is the rank of the dimension matrix.

The period of a mathematical pendulum depends on its length (L), de�ection (�0), accel-
eration of gravity (g), and mass (m). To apply dimensional analysis, the mass m has to
enter in at least one dimensionless combination with the others. This is not possible since
m is the only quantity which contains kg.

(b)

We assume a physical relation
� (v; d; h) = 0: (4)

Here, just one unit (meter) is involved in all physical quantities. Thus, we have 3� 1 = 2
dimensionless combinations �1 and �2, and a relation �1 = � (�2). We may choose d as a
core variable such that �1 = v=d3 and �2 = h=d. Then,

v

d3
= �

�
h

d

�
: (5)

1



For a conical �tree�without branches v = �hd2=12; and

v

d3
=
�

12

h

d
; (6)

The function � is then linear, � (x) = �x
12
.

2 Problem 2

A river �ows into an ocean basin. The river brings sand and clay so that the basin is �lled
up over time. We shall formulate a simple one-dimensional model for how the basin is �lled,
and we assume that the basin spans from x = 0 to x = +1 and has a constant depth h at
t = 0. Conditions across (in the y-direction) are constant.

The amount of sand and clay which settle on the bottom per time and area unit is q (x; t).
We write the depth z = b (x; t), x � 0, t � 0, and let b (x; t) � 0. If the bottom tilts, the
particles on the bottom will continue to move, and it has been found that the mass �ux
will be proportional to the slope, that is, the volume �ux may be written

j = �k @b
@x
: (7)

(a) Write the conservation equation in integral form for a part of the bottom, x0 � x � x1,
and show that we for the di¤erential formulation obtain an equation which is identical to
the heat equation,

@b

@t
= k

@2b

@x2
+ q: (8)

(b) Assume that all sand and clay enter at x = 0 (i.e. q = 0 for x > 0), and that the
amount entering is always su¢ cient for Eqn. 8 to hold for t > 0. Argue that the solution
to Eqn. 8 will be a similarity solution in this case, and �nd b (x; t) for x � 0 and t > 0.
(Hint: The equation

d2y

d�2
+
�

2

dy

d�
= 0 (9)

has the general solution A+B erf (�=2), where erf (x) = 2p
�

R x
0
exp (�s2) ds).

(c) A more realistic scenario is that the shore, s (t), will move forward with time. Assume
that a constant volume of sand and clay enters the basin per time unit, q0, and that all sand
and clay enter at the shore.

The solution will then be stationary with respect to the shore and may be written by means
of a function b0 so that

b (x; t) =

�
0 x � s (t) = Ut+ x0

b0 (x� Ut� x0) x > Ut+ x0
(10)

Determine the velocity U and the solution in this case.
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Solution:

The background for this problem is taken from the �eld Basin Modelling, i.e. mathematical
modelling of the geological processes forming what much later becomes an oil reservoir.

(a)We do the computations with a segment with width B and introduce density, �ux and
sources. Here we assume that the density of sand is a constant �: The �ux then becomes �j
since j was supposed to be the volume �ux. Similarly, the source function will be �q (x; t).
(However, both B and � drop out from the relations at the end, such that we could as well
compute per unit width, and with � = 1).

Our control volume has width B and extends from x = x0 to x = x1. Thus, we obtain the
general (one-dimensional) conservation law

d

dt

Z x1

x0

�B (b (x; t)� (�h)) dx+
�
�k @b
@x
(x1; t) + k

@b

@x
(x0; t)

�
�B =

Z x1

x0

q (x; t) (�B) dx;

(11)
or

d

dt

Z x1

x0

(b (x; t) + h) dx+

�
�k @b
@x
(x1; t) + k

@b

@x
(x0; t)

�
=

Z x1

x0

q (x; t) dx: (12)

If we let x1 ! x0 and divide by (x1 � x0), we obtain

@

@t
(b+ h) =

@b

@t
= k

@2b

@x2
+ q: (13)

(b) In this case, the source is localized at x = 0, such that the equation for x > 0 becomes
just bt = kbxx. We scale b with h and write the solution as

b = hf (x; t; k) : (14)

It is not obvious that we have a similarity solution since the depth h could be a length scale,
but this length is not associated with the horizontal length. The problem is completely
equivalent to a heat conduction problem where the temperature is constant and equal to T0
at x = 0, and T1 when x!1. The temperature could then be written as T (x; t) = T0 +
(T1 � T0) � (x; t; k), and we obtain a similarity solution for � . Similarly to the temperature,
we should be able to write the solution for b as

b = �h�
�
xp
kt

�
= �h� (�) ; � = xp

kt
; (15)

where � (0) = 0 and � (�)! 1 when � !1: Entering this into the equation after divided
by �h leads to

�t � k�xx = �
1

2

xp
k

1

t3=2
�0 � k 1

kt
�00 = 0; (16)

or
�00 +

�

2
�0 = 0: (17)

This is the equation given in the problem, and we immediately see that

b (x; t) = �h erf
�
xp
kt

�
: (18)
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(c) If we assume the given form for b, the amount of sand and clay between s (t) and x =1
will be constant. This means that the speed at which the shore advances, ds=dt = U , has
to match q0, i.e.

hB � U = q0B; (19)

or
U =

q0
h
: (20)

(The argument is simply that the amount per unit of time has to be equal to the shore�s
growth per unit of time. Note that [q0] = m3s�1m�1).

If we let � = x� Ut� x0 and put in b into the equation where x > Ut+ x, we obtain

�Ub00 = kb000; (21)

with general solution

b0 (�) = A+B exp

�
�U
k
�

�
: (22)

It is required that

b0 (0) = 0;

b0 (1) = �h; (23)

such that the solution becomes

b0 (�) = h

�
exp

�
�U
k
�

�
� 1
�

(24)

Introducing the original variables leads to

b (x; t) =

�
0; x � s (t) = Ut+ x0;

h
�
exp

�
�U
k
(x� Ut� x0)

�
� 1
�
; x > Ut+ x0:

(25)

3 Problem 3

It has been suggested to model the population of King Crab, K (t), in Varangerfjorden by
means of the following di¤erential equation:

dK

dt
= rK

�
1� K

M

��
K

m
� 1
�
; 0 < m < M: (26)

(a) What are the properties of the model and what are the equilibrium populations? Show
how we can use linear stability analysis to determine the stability of the equilibrium popu-
lations, and make sketches of the development of K (t) for t > 0.

(b) A simpli�ed model which also includes �shermen, F (t), has, after scaling, the following
form:

dF

dt
= �F

2
+KF;

dK

dt
= K (1�K)� F (27)
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What kind of qualitative properties are built into this model? The path F = 3K (K � 1) =2; 0 �
K � 1, is a solution to Eqn. 27 and divides the �rst (F;K)-quadrant into two separate
regions. What happens when the system is in the unbounded region?

(c) Determine the equilibrium points for the model in Eqn. 27 and determine their type.
What happens in the region de�ned by 0 � K � 1 and 0 � F � 3K (K � 1) =2?
Solution:

(a) Let us observe that the population increases if

m < K < M: (28)

The equilibrium points are given by

K = 0;m;M; (29)

and by sketching the third degree polynomial f (K) which constitute the right-hand sides,
we �nd

f 0 (0) < 0;

f 0 (m) > 0; (30)

f 0 (M) < 0:

We omit the simple argument to decide stability/instability. Here we just note that 0 and
M are stable, while m is unstable. A population less than m will die out.

(b) We see that

� if we do not have �shing activity, the growth follows the logistic model

� �shing activities will reduce the population

� if the population K < 1=2 is not so interesting to �sh and the amount of �shers
decreases

� if K > 1=2 the amount of �shers increases.

Outside the limit trajectory, F will be larger than max (0; 3K (1�K) =2) ; and this means
that dK

dt
< 0. Thus, the population dies out. This argument is not quite rigorous, since

one should check what is happening in the neighborhood of singularities which lie on the
border of the region.

(c) The singularities are given by

�F
2
+KF = 0;

K (1�K)� F = 0; (31)

with solutions fF = 0; K = 0g,fF = 0; K = 1g and
�
F = 1

4
; K = 1

2

	
.
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The linearized system for fF = 0; K = 0g has form

d

dt

�
f
k

�
=

�
�1
2
0

�1 1

� �
f
k

�
(32)

with eigenvalues �1 = �1
2
and �2 = 1, hence the point is a saddle point. This is also

the case for fF = 0; K = 1g. By linearizing around the point
�
F = 1

4
; K = 1

2

	
we �nd, by

introducing F =
�
1
4
+ f
�
and K =

�
1
2
+ k
�
that

d

dt

�
f
k

�
=

�
0 1

4

�1 0

� �
f
k

�
(33)

This gives �1 = �1
2
i and �2 = 1

2
i, and consequently,

�
F = 1

4
; K = 1

2

	
is a center according

to the linear analysis. More generally it could be a stable or unstable focus. If the point
really is a center, the variations will be periodical, i.e. they will continue inde�nitely.

It is possible to show that the point is a center, and the simplest is to introduce a new
crab-variable,

K =
1

2
+ � (34)

The system is then

dF

dt
= �F;

d�

dt
=
1

4
� �2 � F

and the trajectories become symmetric with respect to the axis � = 0. This can only
happen if the trajectories around

�
F = 1

4
; � = 0

	
lying inside the limiting path are closed.

Digression: One can linearize such systems once and for all. If

_x = f (x) (35)

is a autonomous system with a di¤erentiable right-hand side, we may Taylor-expand around
the singular point x0 and write

f1 (x0+y) = f1 (x0) +
NX
i=1

@f1
@xi

(x0) yi +HOT; (36)

� � �

fN (x0+y) = fN (x0) +

NX
i=1

@fN
@xi

(x0) yi +HOT; (37)

The short-hand notation is

f (x0 + y) = f (x0) +Ay+HOT;

A = faijg ; aij =
@fi
@xj

(x0) : (38)
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Once plugged into the system, this gives

d (x0+y)

dt
= _y = f (x0) +Ay+HOT = Ay+HOT; (39)

and the linearized system becomes
_y = Ay:

Here the A-matrix is

A =

�
�1
2
+K F
�1 1� 2K

�
; (40)

and it is simple to insert in the singular points and �nd the eigenvalues.

4 Problem 4

In order to model the crabs�migration along Finnmarkskysten we shall assume they perform
a �random walk�, so that the �ux is j� = �Dr���, where �� (x�; t�) is the density of crab
(amount per area unit), D is a constant, and r� = @

@x� {̂x +
@
@y� {̂y. The growth of the crab

population (per area unit) occurs according to a simpli�ed model as in problem 3,

q (x�; t�) = r�� (x�; t�)

�
1� �

� (x�; t�)

�max

�
: (41)

We do not consider �shing in this case.

(a) Formulate the conservation equation for crab on integral form for a region of the ocean
and show that the di¤erential formulation leads to a non-linear di¤usion equation, which,
after scaling, may be written

�t = r2�+ � (1� �) : (42)

Below we consider Eqn. 42 in one space dimension (x),

�t = �xx + � (1� �) : (43)

(b) Eqn. 43 has constant solutions �0 = 0 and �1 = 1. Check the stability of these solutions
by introducing solutions of the form � (x; t) = �j + a (t) exp(ikx), j = 0; 1, jaj � 1.

(c) It may be shown (but should not be derived here) that the Eqn. 43 has a special solution

� (x; t) =

 
1 + exp

 r
1

6
x� 5

6
t

!!�2
: (44)

What kind of situation does this solution describe? Estimate the time it takes from the crab
is observed at a certain location until the population is of the order of the maximum when
r = 0:3year�1.

Solution:
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(a) Let us consider a two-dimensional region R and the standard law,

d

dt�

Z
R

��dA+

Z
@R

j� � n̂dS =
Z
R

q (x�; t�) dA: (45)

By applying the divergence theorem and moving the derivative side inside the integral, we
�nd Z

R

�
@��

@t�
+r� � j��q

�
dA: (46)

Since this holds for all R,

@��

@t�
+r� � (�Dr���)� r�� (x�; t�)

�
1� �

� (x�; t�)

�max

�
= 0: (47)

We scale the equation by using
�� = �max�: (48)

For time we ignore di¤usion and assume that �� is small. Then, since @�
�

@t
t r��; the obvious

time scale is T = r�1. Finally, we decide the length scale X by considering di¤usion:

D
T

X2
= O (1) : (49)

In other words,
X =

p
DT =

p
Dr�1: (50)

This gives
@�max�

r�1@t
+
�max
Dr�1

r � (�Dr�)� r�max� [1� �] = 0; (51)

which returns the given equation.

This equation is named Fisher�s equation, after the statistician R. A. Fisher who �rst used
it to model the di¤usion of genetic features.

(b)

It is obvious that �0 and �1 are solutions. Linearizing around � = 1, in other words
� = 1 + a (t) exp (ikx), gives

_a exp (ikx) = �k2a exp (ikx)� a exp (ikx) +HOT: (52)

To the leading order, we have
_a = �

�
k2 + 1

�
a: (53)

Thus, we see that, since the solution is a (t) / exp [� (k2 + 1) t], this perturbation dies out
regardless the size of k. This means that all perturbation p (x; t) where

p (x; t) =

Z 1

�1
eikxa (k; t) dk (54)

die out.
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If we do the same around � = 0, we end up with

_a =
�
1� k2

�
a; (55)

Now, a critical situation occurs whenever k2 < 1. Such �long-wave� perturbations will
grow in time and � = 0 is not unconditionally stable.

(c) Let us �rst note that the �ux

f (�) =
1

(1 + exp (�))2
(56)

tends to 1 when � ! �1 and to 0 when � ! 1. The transition from 1 to 0 happens in
the region around � = 0:

f (�5:3) t 0:99;
f (2:2) t 0:01: (57)

The argument of the function, � =
q

1
6
x� 5

6
t, implies that � (x; t) behaves like a wave front

moving from �1 to +1 with speed

u =
5
6q
1
6

=
5p
6
: (58)

Behind the front the density is approximately equal to 1, and in front of the front approx-
imately like 0.

If we look to at the function in x = 0, we can compute how long time it takes for a value
� = 0:01 to reach 0:99:

�5
6
t1 = 2:2;

�5
6
t2 = �5:3; (59)

That is,

�t = t2 � t1 = 6
6

5
� 2:26

5
t 4:5: (60)

With a given value for r = 0:3year�1 and time scale r�1, it becomes

�t t
4:5

r
= 15years (61)
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