
TMA4195 Mathematical modeling, 15. december 2005

Suggested solution

Problem 1

We can put up the dimension matrix:

G ρ V Ω

kg −1 1 0 0
m 3 −3 3 0
s −2 0 0 −1

It has rank 3 (consider the last three columns, for example). Thus the null space has dimension
4−3 = 1, so there is just one independent combination: For example,Ω2/(Gρ). (This is easily found
without writing up the dimension matrix, and it is not hard to give a direct convincing argument
that this is essentially the only dimensionless combination.)

We neglegted to mention the flattening, which is of course already dimensionless. By Buckingham’s
pi theorem the flattening must be a function ofΩ2/(Gρ).

Problem 2

a) The electron starts with a moderate (relative to c) velocity |v| = u and an approximate acceleration
of magnitude eE/m. The velocity scale u seems reasonable to begin with. At the given acceleration
an additional velocity u is gained over a time e = u/(eE/m) = mu/(eE), so we pick this as our time
scale: Thus we write

v = uv′, t = mu

eE
t ′

and get
eE

mu

d

d t ′
muv′√

1−
(
u|v′|2)

c2

= eE i

which, after canceling various terms and dropping the primes, becomes

d

d t

v√
1−ε|v|2

= i, ε= u2

c2 .

The initial condition v(0) = uj is uv′(0) = uj, which becomes v(0) = i after division by u and dropping
the prime.

b) By an application of Taylor’s formula (or the binomial theorem) we write

1√
1−ε|v|2

= 1+ 1
2ε|v|2 +O(ε2)

so that we can write
d

d t

(
(1+ 1

2ε|v|2)v
)= i+O(ε2).
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Now, with v = v0 +εv1 +O(ε2) we find |v|2 = |v0|2 +O(ε). Thus we get

d

d t

(
(1+ 1

2ε|v0|2)v0 +εv1
)= i+O(ε2),

or more usefully
dv0

d t
+ε d

d t

(
v1 + 1

2 |v0|2v0
)= i+O(ε2),

which leads to
dv0

d t
= i,

d

d t

(
v1 + 1

2 |v0|2v0
)= 0.

The first of these, with the initial condition v0(0) = j, is immediately integrated to get

v0 = t i+ j.

The second, with the initial condition v1(0) = 0, yields

v1 = 1
2

(
j−|v0|2v0

)= 1
2

(
j− (t 2 +1)(t i+ j )

)= 1
2

(−(t 3 + t )i+ t 2j
)
.

The total approximation is
v = t i+ j+ 1

2ε
(−(t 3 + t )i+ t 2j

)
.

The “correction term” gains the same magnitude as the lowest order term at time t ∼ 1/
p
ε. At this

time the total velocity v is about 1/
p
ε, which in unscaled variables becomes u/

p
ε = c. We should

not be surprised that our approximation, based on velocities ¿ c, becomes inaccurate when the
velocities approach c.

Problem 3

µ

u

Problem 4

a) Note that the ice is moving with a velocity v in the (x, t ) coordinate system. For a moving control
volume a < x < b the conservation of energy becomes

d

d t

∫ b(t )

a(t )
ρcu d x = k

∂u

∂x
(b, t )−k

∂u

∂x
(a, t ).

where ρ is the density, c the specific heat capacity, and k the heat conductivity of the ice. This is
assuming that no other processes in the ice disturb the energy balance. Use the transport theorem
on the integral (with ȧ = ḃ = v), and also assume sufficient smoothness of u so the differentiation
can be taken inside the integral sign, and get∫ b

a
ρc

∂u

∂t
d x + vρcu(b, t )− vρcu(a, t ) = k

∂u

∂x
(b, t )−k

∂u

∂x
(a, t ).
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Next rewrite the differences as integrals of derivatives:∫ b

a
ρc

∂u

∂t
d x +

∫ b

a
vρc

∂u

∂x
d x =

∫ b

a
k
∂2u

∂x2 d x

Finally, collect all the integrals into one integral, use the arbitrariness of a and b to show that the
integrand must be zero, and divide by ρc to arrive at the given equation, where κ= k/(ρc).

The condition u(0, t ) =U (t ) is just a restatement of the fact that the surface temperature is U , and a
recognition of the fact that the surface is always at x = 0.

Alternatively, one could get the usual heat conduction equation in a coordinate system where the
ice does not move and then change coordinates.

b) Setting t = T t ′ and x = vT x ′ in the model, then “dropping the primes” results in the rescaled model
in the problem, with

ε= κ

v2T
.

For ε= 0 the problem becomes

∂u

∂t
+ ∂u

∂x
= 0 x > 0,

u(0, t ) =U (t ),

which is a simple transport equation with solution

u(x, t ) =U (x − t ).

(If one wishes to see it in the usual conservation law terms, the characteristic equation is ẋ = 1, with
solution x = t + t0. So the characteristic through a given point (x, t ) starts at (0, t0) with t0 = x − t .
Hence the formula above. The setup is a bit unusual in that conditions are given on the boundary
x = 0, rather than at an initial moment t = 0.)

Write τ = κ/v2. From the given values we find τ ≈ 10Gs, or not quite 320 years. Since ε = τ/T , we
conclude that heat conduction is important when T ≈ τ or less; that is, on time scales of roughly 320
years or less.

Our scaling already balances the first two terms of the equation. To balance the third term with
the other two, all we need to do is put ε = 1. This implies T = τ. The corresponding length scale is
vτ≈ 100m.

Problem 5

Setting Vi =Vi 0 +εVi 1 +O(ε2) in Taylor’s formula

Vi
(
1+ε f (ϕ),ϕ

)=Vi (1,ϕ)+ε f (ϕ)
∂Vi

∂r
(1,ϕ)+O(ε2)

and collecting equal powers of ε we find

Vi
(
1+ε f (ϕ),ϕ

)=Vi 0(1,ϕ)+ε
(
Vi 1(1,ϕ)+ f (ϕ)

∂Vi 0

∂r
(1,ϕ)

)
+O(ε2).

Now doing the same for Vu we compare terms, and get

Vi 0(1,ϕ) =Vu0(1,ϕ), Vi 1(1,ϕ)+ f (ϕ)
∂Vi 0

∂r
(1,ϕ) =Vu1(1,ϕ)+ f (ϕ)

∂Vu0

∂r
(1,ϕ).
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The equation on the left is already satisfied. But also, the two partial derivatives in the equation on
the right are equal (from looking at the formulas for V0), so that Vi 1(1,ϕ) =Vu1(1,ϕ) follows.

Next, Taylor’s formula for ∂Vi /∂r is

∂Vi

∂r

(
1+ε f (ϕ),ϕ

)= ∂Vi

∂r
(1,ϕ)+ε f (ϕ)

∂2Vi

∂r 2 (1,ϕ)+O(ε2).

Once more we insert Vi =Vi 0 +εVi 1 +O(ε2) and collect equal powers:

∂Vi

∂r

(
1+ε f (ϕ),ϕ

)= ∂Vi 0

∂r
(1,ϕ).+ε

(∂Vi 1

∂r
(1,ϕ)+ f (ϕ)

∂2Vi 0

∂r 2 (1,ϕ)
)
+O(ε2)

Doing the same for Vu and comparing terms we get

∂Vi 0

∂r
(1,ϕ) = ∂Vu0

∂r
(1,ϕ),

∂Vi 1

∂r
(1,ϕ)+ f (ϕ)

∂2Vi 0

∂r 2 (1,ϕ) = ∂Vu1

∂r
(1,ϕ)+ f (ϕ)

∂2Vu0

∂r 2 (1,ϕ).

Again, the equation on the left is already satisfied. The equation on the right is

∂Vi 1

∂r
(1,ϕ)+ f (ϕ) = ∂Vu1

∂r
(1,ϕ)−2 f (ϕ),

which gives (6).

Equation (1) in the problem gives

2 =
∫ π

0

(
1+ε f (ϕ)+O(ε2)

)3 sinϕdϕ=
∫ π

0

(
1+3ε f (ϕ)

)
sinϕdϕ+O(ε2)

= 2+3ε
∫ π

0
f (ϕ)sinϕdϕ+O(ε2)

which implies (7). Similarly

3 =∇2Vi =∇2Vi 0 +ε∇2Vi 1 +O(ε2), 0 =∇2Vu =∇2Vu0 +ε∇2Vu1 +O(ε2)

imply ∇2Vi 1 =∇2Vu1 = 0. Equation (4) becomes

V (1,ϕ)+ε f (ϕ)
∂V

∂r
(1,ϕ)− 1

2ε
(
1+ε f (ϕ)

)2 sin2ϕ= constant.

Inserting V =V0 +εV1 and using V0(1,ϕ) = 1 and ∂V0/∂r (1,ϕ) = 1 we are left with

1+εV1(1,ϕ)+ε f (ϕ)− 1
2εsin2ϕ+O(ε2) = constant,

which is clearly satisfied to lowest order, while the O(ε) terms add up to (8.) It clearly does not matter
here whether we use Vi 1 or Vu1.

Now we try to satisfy (6):

3 f (ϕ) = ∂Vu1

∂r
(1,ϕ)− ∂Vi 1

∂r
(1,ϕ) =−5aP2(cosϕ).

Thus
V1(1,ϕ)+ f (ϕ)− 1

2 sin2ϕ=−2
3 aP2(cosϕ)− 1

2 sin2ϕ=−a cos2ϕ+ 1
3 a − 1

2 sin2ϕ

which is a constant precisely when a = 1
2 . Thus we end up with

f (ϕ) =−5
6 P2(cosϕ).
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The flatting is − 5
6

(
P2(0)+P2(1)

)
ε+O(ε2) = 5

4ε+O(ε2). For the Earth, the leading term is ≈ 0.0043. The correct
flattening of the Earth is 0.0036. The discrepancy is probably because the earth does not have uniform density,
but has a heavy iron core instead.

Addendum. Here I present the modeling leading up to problem 5. This is not a part of the exam solution, but
is provided for completeness’ sake.

Let the planet have a uniform density ρ and a volume V , so that its mass is M = ρV and its radius, if it is not
spinning and hence forms a perfect sphere, is R where 4

3πR3 = V . When the planet is rotating at moderate
speeds, it will be near a sphere of this radius, and we write the surface of the spinning planet as r = RF (ϕ) in
spherical coordinates.

Writing up the volume of the planet as an integral in spherical coordinates, and requiring that this volume is
still V , we arrive at the condition ∫ π

0
F (ϕ)3 sinϕdϕ= 2.

The fundamental equation of the gravitational potential is ∇2V = 4πGρ, which in this case becomes

∇2V =
{

4πGρ r < RF (ϕ),

0 r > RF (ϕ),

with the additional requirement that V and its first order derivatives are continuous across the planetary
surface r = RF (ϕ). (Otherwise, a sort of mass distribution like a Dirac delta is indicated on the surface.)

A planet typically behaves like a blob of liquid: Its surface will be an equipotential surface. It it is spinning
with angular velocityΩ around the z axis then we will observe a centrifugal force in a coordinate system that
is fixed with respect to the planet. This force is in fact conservative, with potential − 1

2Ω
2(x2 + y2). Therefore,

V − 1
2Ω

2(x2 + y2) = constant on the surface r = RF (ϕ).

The solution forΩ= 0 is F (ϕ) = 1 and

V =
−MG

r
r ≥ R,

2
3πGρr 2 +constant r ≤ R

where the constant is chosen to make V continuous at r = R.

The obvious scaling for the problem uses the length scale R. Equally obvious is the scale MG/R for V . These
scalings immediately leads to the problem on scaled form as given in the exam problem, with

ε= Ω
2R3

MG
= 3

4

Ω2

πGρ
,

(notice the connection with problem 1), or alternatively

ε= Ω2R

MG/R2 = Ω
2R

g

where the numerator Ω2R is the centrifugal acceleration at the equator, while the denominator g is the ac-
celeration of gravity on the surface. Clearly, it will be a very unusual planet that does not have ε¿ 1.

Above, I blamed the difference between my solution and the actual flattening of the Earth on the heavy core.
If we consider the extreme case of a core that is just a point mass and contains most of the planetary mass, our
problem is reduced to the much simpler of computing the equipotential surface near r = 1 of the potential

−1

r
− 1

2ε(x2 + y2).

On the z axis, this potential is just −1/r , which equals −1 at r = 1. In the x y plane, on the other hand, the
potential is −1/r − 1

2εr 2. Setting r = 1+δ, this is approximately −1+δ− 1
2ε, which is −1 for δ = 1

2ε. Thus
the flattening in this case is only about 1

2ε. Certainly, therefore, it is reasonable to expect less flattening than
predicted by our model when the planetary core is heavier, a condition that surely is shared by all planets.
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