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Solution with additional comments

1 Problem

A cookbook states a cooking time of 3.5 hours at the oven temperature Toven for a 3 kg turkey.
For a 10 kg (American) turkey, 7 hours is suggested.

(a) How can we derive the heat equation

�c
@T

@t
= kr2T; (1)

where the density �, the heat capacity c, and the heat transmission k, are constant?

We assume that the turkey�s heating follows the equation 1. The heat transfer through the
turkey�s surface follows Newton�s law of heating,

�krT jsurface = � (Toven � Tsurface) ; (2)

where � is a constant.

(b) The cooking time, ts, has to be dependent on, in addiction to the parameters above, the
turkey�s diameter D, the temperature di¤erence between the oven and the turkey before (�T0) and
after (�T1) the cooking (We assume that all turkeys are geometrically similar!). Use dimension
analysis to �nd an expression for ts (Hint: combine the parameters in Eqns. 1 and 2 before you
use them in the dimension analysis).

(c) After short time, the turkey�s surface reach the same temperature of the oven. This implies
that equation 2 simpli�es to Toven = Tsurface, and the parameter with � disappears. Use this
information to simplify dimension analysis and show that ts is proportional to the turkey�s weight
to the power 2/3. How does this match with what has been indicated in the cookbook?

Solution:

(a) The heat density is given by �cT , and the heat �ux is j = �krT . Without source terms,
we obtain the integral conservation law

d

dt

Z
R
�cTdV +

Z
@R
j � nd� = 0;

This implies - by moving the derivative into the integral, using the divergence theorem, and letting
R vary - the di¤erential formulation

�c
dT

dt
+r � (�krT ) = 0:

(b) We follow the hint in the Problem and assume that

ts = ts

�
D;�;

�

k
;�T0;�T1

�
;

where the heat di¤usion coe¢ cient is � = k= (�c).
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Digression: One could think that Tsurface and rT jsurface should also be considered. However,
these quantities are dependent on time and dependent on the temperature variation. This variation
is dependent on �=k and other parameters.

From the equations, we derive that [�] = s/m2 and [�=k] = m�1. Thus, we are able to state
the dimension matrix as

ts D � �=k �T0 �T1
m 0 1 -2 -1 0 0
s 1 0 1 0 0 0
K 0 0 0 0 1 1

The matrix has rank 3 and, hence we have 3 dimensionless combinations which are easily derived:

�1 =
�ts
D2
; �2 =

D�

k
; �3 =

�T0
�T1

;

Thus �1 = �(�2; �3), or

ts =
D2

�
�

�
D�

k
;
�T0
�T1

�
:

The alternative expression

ts =
1

��2
	

�
D�

k
;
�T0
�T1

�
is equally correct.

The most elegant solution (found by one of the students) is however to scale the equations 1
and 2 using D for length and ts for time. Then �1 and �2 drop out immediately.

(c) If we get rid of �, we �nd

ts =
D2

�
�

�
�T0
�T1

�
:

Since the weight can be written as W = G�D3, where G is a constant dimensionless �geometry
factor�,

ts =
(W=G�)2=3

�
�

�
�T0
�T1

�
_W 2=3:

With cooking time for the 3 kg turkey is 3.5 hours, the cooking time for a 10 kg turkey should be
(assuming that �T0 and �T1 remain the same)

ts (10kg) = ts (3kg)
�
10

3

�2=3
= 3:5

�
10

3

�2=3
hour = 7:8 hour.

Eight hours for a 10 kg turkey would therefore be a better rule than seven hours.

2 Problem

Let us consider the problem

"
d2y

dt2
+
dy

dt
= 2t; 0 � t � 1; 0 < "� 1;

y (0) = y (1) = 1:
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What do we call such problems? Find, to leading order in ", the outer, inner, and uniform
solutions to the problem (Hint: the boundary layer is near t = 0).

Solution:

Since this is an equation with a small parameter in front of the highest derivative, it is called
a singular perturbation problem.

The leading order outer solution, y0 (t), is found by setting " = 0,

dy0
dt

= 2t:

The general solution is A+ t2, but it is impossible to ful�l both the boundary conditions, since
y (0) = 1 implies that y0 (t) = 1 + t2, and y (1) = 1 implies that y0 (t) = t2.

Given the hint, it is reasonable to try a new time scale, t = �� around 0. This leads to

"

�2
Y�� +

1

�
Y� = 2��:

By choosing � = ", the equation becomes

Y�� + Y� = "
22�;

with a general solution to the leading order, Y0 (�) = A + Be�� (One could think that � = "1=2

was a possibility, but this would give an equation Y0� = 0 which does not help us). If we ful�l the
boundary condition Y0 (0) = 1, we obtain A+B = 1, or

Y0 (�) = 1 +A
�
e�� � 1

�
:

The solution would satisfy both boundary conditions if we set A = 0, but we then apply Y0 outside
its admissible region (this misuse of singular perturbation is sometimes seen in science) .

The matching condition is, in its simplest form, given by

lim
t!0

y0 (t) = lim
�!1

Y0 (�) ;

and this leads to, by using y0 (1) = 1,
0 = 1�A;

or A = 1. Thus, the uniform solution to the leading order is

y
(u)
0 = y0 (t) + Y0

�
t

"

�
� y0 (0) = t2 + e�t=":

The error around t = 1 is totally negligible.

Digression (not part of the exam): The exact solution to the equation is

yex (t) = A+Be
� t
" + t2 � 2t";

and, thus, with a negligible error O
�
e�1="

�
,

yex = t
2 + e�t=" + 2"

�
1� e�

t
" � t

�
:

Note that �to the leading order in "�means the O (1) term and not O (").
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3 Problem

Let x� (t�) be the cod population in an ocean region as a function of time t�. The region may hold
a maximum sustainable amount of �sh equal to K, and, as long as �shing is prohibited and x� �
K, x� will grow with rate r, dx�=dt� = rx�. We assume that the amount of caught �sh per time
unit is �x�B, where B is the number of participating boats , and � is a constant.

(a) State a model for the amount of �sh such that, using a suitable scale, we obtain the form

dx

dt
(t) = x (t)� x2 (t)� �x (t) :

(b) Discuss the equilibrium points for di¤erent values of �. Sketch the possible trajectories path
for the amount of �sh.

(c) Find an expression for the number of boats giving an optimal management of the �sh
resources.

Solution:

(a) The equation suggests we should assume a logistic model in absence of �shing activities.
Thus, we �nd immediately that

dx�

dt�
= rx�

�
1� x

�

K

�
� �x�B

We scale the model by setting

x� = xK;

t� =
1

r
t

Thus,

Kr
dx

dt
= rKx (1� x)� �KxB;

or

_x = x (1� x)� �x;

� =
�B

r
:

(b) The equilibrium solutions are

x1 = 0;

x2 = 1� �:

Using straightforward linear stability and

d (x (1� x)� �x)
dx

= 1� 2x� �;

we obtain that x1 is stable for � > 1 and unstable for � < 1, while x2 is stable for � < 1 and
unstable for � > 1 (the physical acceptable points are clearly x1, x2 � 0).
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If � = 1, the equation becomes
_x = �x2;

and both equilibrium solutions coincide at x = 0. This equation can be solved generally:

1

x
= t+ C;

i.e.
x =

1

t+ C
;

and also x = 0, as obviously is a solution. If we start in x (0) > 0 and close to 0, we have x (t)! 0
when t!1. If, on the contrary and un-physically, x (0) = 1=C < 0, we have x (t)! �1 when
t ! �C. The equilibrium point is stable for � = 1, since we have that x � 0, and the answer is
as follows:

xs = max f1� �; 0g ; � � 0

is stable, while
xu = 0; 0 � � < 1;

is unstable.

(c) A constant outtake per time unit can be expressed as

Q = (�B)x�2 = (�B)K(1� �) = (�r)K(1� �) = Kr�(1� �); (3)

and this has a maximum for � = 1=2, that is B = r=(2�), and x�2 = K=2.

4 Problem

In this problem we study the tra¢ c along a road (a one-way street towards +1 and without in- or
out-�ow for the moment). We further assume that all variables are scaled so that the car density
� is between 0 and 1, and the car speed v is 1� �.
(a) Show how one derives an expression for the speed U of a shock in the car density, and that

we in this case obtain U = 1 � �1 � �2, where �1 and �2 are the densities on each side of the
shock.

Assume that the car density along the road for t < 0 is equal to 1=2. Between t = 0 and t = 1
the cars get a red light due to a pedestrian crossing placed in x = 0. For t > 1, the light is green.

(b) Find the solution � (x; t) for t � 0. (Hint: make a sketch of the situation in an x-t-diagram.
Show that the solution for � has to be determined in 5 di¤erent regions, where the values in 4 of
them is obvious. In order to �nd the regions, one has to �nd their borders).

A second road (with similar properties as the �rst one) is now merging from the side with the
�rst one.

(c) Which conservation law has to be ful�lled at the merging point? Assume that the �ux on
the �rst road is constant, j1 = 1=8, and that the density is less than 1=2. Describe (without
further calculations) the evolution of the car density on the �rst road when the density �2 on the
second road increases from 0 to 1. The cars on the �rst road are �exible and let entering cars
merge whenever it is possible. Consider in particular what happens when the �ux on the second
road reaches 1=8.

Solution:

5



ρ =0ρ =1
ρ =1/2 ρ =1/2

A B

C D

x

t

O

G

Expansion wave

ρ =0ρ =1
ρ =1/2 ρ =1/2

A B

C D

x

t

O

ρ =0ρ =1
ρ =1/2 ρ =1/2

A B

C D

x

t

O

G

Expansion wave

ρ =0ρ =1
ρ =1/2 ρ =1/2

A B

C D

x

t

O

Figur 1: Sketch of the situation around the crossing.

This is the so-called standard model : 0 � � � 1; v = 1 � �; j = � (1� �). The conservation
law can be written as

d

dt

Z b

a
�dx+ j (b)� j (a) = 0; (4)

or in di¤erential form,
�t + (� (1� �))x = �t + (1� 2�) �x = 0:

(a)We �nd out the shock speed by considering a shock with speed U in the interval [a; b]. The
density to the left of the shock is �1, while the one on the right �2. By using the equation 4, we
obtain

(�2 � �1)U = �2 (1� �2)� �1 (1� �1) ;
or,

U = 1� �1 � �2:

(b) For � = 1=2 the characteristics are vertical, and we have a situation as sketched in �gure
1.

For the shock OA, �2 = 1 and �1 = 1=2, in other words, the shock speed is UOA = �1=2. In
an analogous way we �nd that UOB = 1=2, UGB = 1 and UGA = �1. The point A is at x = �1,
t = 2, and B is at x = 1, t = 2. Within the rarefaction wave, the solution is given by

x = c (�) (t� 1) = (1� 2�) (t� 1) ;

or

�e (x; t) =
1

2

�
1� x

t� 1

�
:

It remains to �nd the shocks AC and BD. In a point (x; t) on the shock AC we have that

�1 = 1=2, while �2 = �e (x; t) = 1
2

�
1� x

t�1

�
. Therefore,

U (x; t) = 1� 1
2
�
�
1

2

�
1� x

t� 1

��
=

x

2 (t� 1) :
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Figur 2: The second road merges with the �rst road.

The equation for the shock becomes

_x =
x

2 (t� 1) ;

x (2) = �1:

The equation is separable and the solution is xAC (t) = �
p
t� 1; t � 2. In a equivalent way we

�nd xBD =
p
t� 1. Thus, the solution is completely determined.

(c) The situation is sketched in �gure 2. Since the crossing is not a parking lot, we must have

j1 + j2 = jout:

We know that j1 = 1=8, but the equation

j1 =
1

8
= � (1� �)

has to possible solutions,

�1;2 =
1

2
�
r
1

8
:

Here, since we also know that �1 < 1=2, the density is equal to 1
2 �

q
1
8 .

As long as j2 < 1=8 the �ux jout < 1=4, the maximum value.

When j2 passes 1=8, cars will pile up on the second road in front of the crossing. Since the
out�ow from the second way can at most be 1=8, the cars� density just before the crossroad
becomes

�2f =
1

2
+

r
1

8
:

In the back of the line we have a shock moving backward with speed

U = 1� �2 � �2f :

up to �2 = �2f . When �2 increases further from �2f , the �ux of the cars on the second road will
be so small (<1/8) that all may enter without problems!
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