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Solution with additional comments

1 Problem

The air resistance, F , of a car depends on its length, L, cross sectional area, A, its speed
relative to the air, U , the density of the air, �, and the air�s kinematic viscosity, �.

(a) Use dimensional analysis to derive the equation

F = �U2A�

�
UL

�
;
A

L2

�
: (1)

In order to determine the function �, the engineers have suggested to test 1:10 scale models
in the long water tank at the Tyholt model basin by dragging them through water (the tank
has 5 � 10m cross section, and a 270m length). The scale model is 1/10 of the original�s
size.

(b) Is this a good idea?

(For estimates: Air: � = 10�5m2/s and � = 1kg/m3. Water: � = 10�6m2/s and � =
103kg/m3).

Solution:

(a) The formula gives us all the physical quantities we need, and, using the formula for
determining any unknown units, we can state the dimensions matrix:

F U L A � �
m 1 1 1 2 �3 2
s �2 �1 0 0 0 �1
kg 1 0 0 0 1 0

(2)

The matrix has rank 3, and with U , L and � as core variables, we obtain

�1 =
A

L2
;

�2 =
�

UL
; (3)

�3 =
F

�U2L2
:

This gives the formula if we transform 	(�1; �2; �3) = 0 into

�3 = �1�

�
1

�2
; �1

�
: (4)

(Dimension analysis never returns a unique expression, and in principle all reasonable ways
to write the formula are equally good. Instead of L we could have used A or

p
A as core

variables).
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(b) The model will reduce L with a factor 10 and the area with a factor 100 (It would
probably be better to say 10:1 if one is thinking of �original ! model�). In order to map
the function �, �1 and �2 should have about the same values as the original. This is �ne
for �1, which is unchanged. For ��12 = UL=� (Reynolds number) to be the same, we need
that Umodel = Uoriginal since L=� is not changed between from the original in the air and
the model in water. For the force on the model, (�waterL2model) = 10�

�
�airL

2
original

�
. Apart

from that, it is clear that the test present big technical di¢ culties. For example, around
100 km/h the model uses less than 10 seconds along the whole tank�s length. The dragging
machinery cannot reach this speed, so one can forget about testing the model for speeds
where air resistance is relevant. Finally, the model should be rolling along the bottom. No
matter how reasonable this all could seem, I have never heard about someone trying it.

Digression: For realistic speeds, � is not very in�uenced by the Reynolds number, but
depends heavily on the cars streamlined geometry. The car industry uses the equation

FD = �U
2A
Cd
2
; (5)

where Cd is the so-called drag-coe¢ cient. On modern cars, it has a value around 0.3.

2 Problem

Determine the equilibrium points and whether they are stable or unstable for the following
equation:

du

dt
=
�
u� u2

�
(u� �) ; u � 0; � � 0: (6)

Solution:

This is a standard problem where the equilibrium solutions can be found by solving

f (u0; �) = 0: (7)

The stability is decided by studying the Taylor expansion around u0 and setting u =
u0 + y +HOT :

dy

dt
=
@f

@u
(u0; �) y +HOT (8)

Stability can normally be decided by using the sign of @f
@u
(u0; �). In this case, the equilibrium

solutions are obvious:

u0 = 0;

u1 = 1; (9)

u2 = �:
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Figur 1: Bifurcation diagram for Problem 2. Red is unstable and green is stable.

Moreover,

@f

@u
(u0; �) = ��;

@f

@u
(u1; �) = �� 1; (10)

@f

@u
(u2; �) =

�
�� �2

�
:

Therefore, we can make the bifurcation diagram as in Fig. 1 (for u � 0, � � 0).
To be complete, one should also check u = 0 for � = 0, and u = 1 for � = 1. For the �rst
point, the equation for the perturbation is _y = y2 +y3, and the point is clearly unstable
if y (0) > 0.

At the point u = 1, � = 1, the equation becomes _y = �y2�y3, which is stable for y (0) > 0
and unstable for y (0) < 0 and small, as it should be expected from the diagram.

3 Problem

The cell density, n�, in a part of the body may be modelled as

dn�

dt�
= �n� � !n�; (11)

where � is the birth rate and ! the death rate. In order to prevent that the density runs
astray, the cells produce a so-called inhibitor which dampens uncontrolled growth. The in-
hibitor has density c� and works by changing the the birth rate to

� =
�0

1 + c�=A
: (12)

The production of the inhibitor is proportional with n�, while it breaks down with rate �:

dc�

dt�
= �n� � �c�: (13)
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This system has a time scale !�1 connected to the breakdown of the cells, and a time scale
��1 connected to the breakdown of the inhibitor. It is known that !�1 � ��1.

(a) Scale the system by applying !�1 as the time scale and A as a scale for c�. Show that
the system with a certain scale for n� may be written

_n =

�
�

1 + c
� 1
�
n;

" _c = n� c: (14)

What is the meaning of " and �? What may be said about the size of ", and what is such a
system called? Determine what kind of equilibrium point the trivial equilibrium point (0; 0)
is. (Here and below we assume that � is somewhat larger than 1).

(b) Determine the path and the equation of the motion for the outer solution of Eqn. (14)
to leading order (O (1)). Show, without necessarily solving the di¤erential equation, that all
motion on this path converges to an equilibrium point which also is an equilibriums point
for the full system.

(c) Determine to leading order the inner solution of (14) by introducing a new time scale.
Then determine a uniform, approximate solution (It is not possible to solve the equation in
(b) explicitly).

Solution:

(a) As suggested, we use the time scale T = 1=!, and C0 as a scale for c�. Comparing Eqns.
13 and 14, we �nd that we must choose a scale for n� as

N0 =
�

�
C0; (15)

If this is used, the equation 14 follows immediately. The remaining parameters are

� =
�0
!
=
1=!

1=�0
;

" =
!

�
=
1=�

1=!
: (16)

Both are relations between time scales, where � is said to be bigger than 1, while 0 < "�
1. This is, therefore, a singularly perturbed system. The equilibrium solutions follow be
putting the RHS to 0:

(n1; c1) = (0; 0) ;

(n2; c2) = (�� 1; �� 1) (17)

Linearizing around (0; 0) gives �
�� 1 0
1
"

�1
"

�
: (18)

Since the eigenvalues are �1 = � � 1 > 0 and �2 = �1=" < 0, the point is a saddle point
(It was not required analyze the other equilibrium point).
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(b) Equation 14 is a singular perturbed system since " � 1 and we write n (t) = n0 (t) +
"n1 (t)+ � � � , and similarly for c for the outer solution. The leading order is n0 (t) and
c0 (t), and we �rst �nd that n0 (t) = c0 (t). This gives us the equation

dn0
dt

=

�
�

1 + n0
� 1
�
n0: (19)

The point (�� 1; �� 1) is still an equilibrium point, and from the sign test we see that
(�� 1) is stable for 19, no matter where we choose to start for 0 < n0 (0) <1.
It is almost possible to solve the equation 19 since we can write

1 + n0
(�� 1� n0)n0

dn0 = dt; (20)

or, since � > 1, �
1

n0
� �

n0 � �+ 1

�
dn0 =

dt

�� 1 : (21)

Thus, an implicit solution is given by

n0
jn0 � (�� 1)j�

= e(t�t0)=(��1): (22)

Since et !1 for t!1, we have that n0 (t) �!
t!1

�� 1.

(c) As usual, we try to scale the time as � = t=" for the initial phase of the motion. This
gives us the following equations, where we useN (�) and C (�) to separate the inner solution
from the outer:

dN

d�
= "

�
�

1 + C
� 1
�
N;

dC

d�
= N � C: (23)

To the leading order,

dN0
d�

= 0;

dC0
d�

= N0 � C0;

which gives us

N0 (�) = n (0) ;

C0 (�) = [c (0)� n (0)] e�� + n (0) : (24)

For the outer solution, we do not have a starting point, but we know from (b) that n0 (t) =
c0 (t). Let us assume that

n0 (0) = A;

c0 (0) = A: (25)
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The �matching-condition�in the most simple form is now

lim
�!1

C0 (�) = lim
t!0

c0 (t) ;

lim
�!1

N0 (�) = lim
t!0

n0 (t) ; (26)

and fortunately, n0 (0) = A satis�es both conditions. The known uniform solution is

uu (t) = u0 (t) + U0 (�)� lim
�!1

U0 (�) : (27)

Therefore, we obtain

nu (t) = n0 (t) ; n0 (0) = n(0);

cu (t) = n0 (t) + [c (0)� n (0)] e�t=": (28)

In general,

_c =
1

"
(n� c) (29)

tells us that _c becomes big and positive whenever n�c � O ("), big and negative whenever
n� c� O (�"). Moreover, we see that _n < 0 if c > �� 1; and _n > 0 if c < �� 1. Without
what we found in (b), this gives a good qualitative insight of trajectories that have been
numerically computed in �g. 2. It is obvious that, as long at we do not start at n (0) = 0,
we will, for t!1, end in the equilibrium point (�� 1; �� 1).

4 Problem

(a) De�ne the scaled �ux and kinematic velocity in the standard model for road tra¢ c,
which leads to the di¤erential equation:

�t + (1� 2�) �x = 0: (30)

Sketch the characteristics and the solution � (x; t) to Eqn. (30) for t > 0 if

(i) � (x; 0) =

�
1 x < 0;
0 x � 0:

(ii) � (x; 0) =

�
0 x < 0;
1 x � 0:

(31)

We are from now considering a situation where cars are continuously entering and leaving
the road (the road itself is a one-way street). This will be modelled as a source/sink term,
such that the complete equation becomes

�t + (1� 2�) �x = "
�
1

2
� �

�
; " > 0: (32)

(If � < 1
2
, there is a net in�ux of cars, whereas cars are leaving the road if � > 1

2
).
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Figur 2: Numerical solutions of the scaled system for � = 2 and " = 0:1. The red dashed
line is the path of the �rst order outer solution.
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(b) Show that a characteristic curve starting at (0; x0; �0) may, for t � 0, be written as�
t ; x0 +

(1� 2�0)
"

�
1� e�"t

�
;
1

2
+

�
�0 �

1

2

�
e�"t

�
: (33)

(c) Find the solution of Eqn. (32) for t > 0 with (i) in (31) as initial condition.

(d) Show that the solution of Eqn. (32) for t > 0 with (ii) in (31) as initial condition
develops a shock. Use the conservation law to argue that the location of the shock may be
stationary. Assuming this, determine the solution.

(Hint: The equation

P (x; y; z)
@z

@x
+Q (x; y; z)

@z

@y
�R (x; y; z) = 0

has the following equations for the characteristics

dx

ds
= P (x; y; z) ;

dy

ds
= Q (x; y; z) ;

dz

ds
= R (x; y; z) ).

Solution:

(a) In the standard model, the density � is the number of cars per unit of length. It is
scaled so as 0 � � � 1. The speed of the cars is v = 1� �, whereas the �ux is j = � (1� �),
and the kinematic velocity c (�) = dj

d�
= 1� 2�. We shall �nd the solution for two di¤erent

cases, and, for sake of clarity, it is nice to make two sketches as in Fig. 3. The situation (i)
leads to a rarefaction wave, while situation (ii) leads to a shock. Note that we have used
that, for the standard model, the shock speed is given by U = 1 � �1 � �2, and therefore,
U = 0 for the problem (ii). Consequently, the solution becomes simply

� (x; t) = � (x; 0) : (34)

For the rarefaction wave, � is piecewise linear, i.e.

� (x; t) =

8<:
1; x � �t;

1
2

�
1� x

t

�
; �t � x � t;

0; x � t:
(35)

(b) The equations for the characteristics (using s as parameter) may be written

dt

ds
= 1;

dx

ds
= 1� 2�; (36)

d�

ds
= �"

�
�� 1

2

�
:

Since the �rst equation gives t = A + s, we can choose s = t. Thus, the third equation
becomes

d�

�� 1
2

= �"dt; (37)
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Figur 3: Situation (i) leads to a rarefaction wave, whereas (ii) gives a shock.

with general solution

ln

������ 12
���� = C1 � "t; (38)

or
� =

1

2
+ C2e

�"t: (39)

(It is even simpler to observe that the equation may be written _�+ "� = "
2
and the general

solution is � = C2e�"t + 1
2
)

Here � (0) = �0, and consequently

� =
1

2
+

�
�0 �

1

2

�
e�"t: (40)

Finally, we compute x from

dx

ds
= 1� 2� = � (2�0 � 1) e�"t; (41)

i.e.
x = C3 +

2�0 � 1
"

e�"t; (42)

and with x (0) = x0,

x = x0 +
2�0 � 1
"

�
e�"t � 1

�
= x0 +

1� 2�0
"

�
1� e�"t

�
; (43)

as was given in the exercise�s text.

(c) Here we use the characteristics from (b):�
t ; x0 +

1� 2�0
"

�
1� e�"t

�
;
1

2
+

�
�0 �

1

2

�
e�"t

�
: (44)

From the projection of the characteristics in the (x; t)-plane, we see that if we start in
x0 with value �0 for t = 0, the direction from (x0; 0) will be dx=dt = 1 � 2�0. Besides,
limt!1 dx=dt = 0, and limt!1 x (t) = x0 + (1� 2�0) =", as shown in the sketch (Fig. 4).
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Figur 4: Sketch of the characteristics for problem (i). The characteristics are not in�uenced
outside the rarefacton wave.

It is not di¢ cult to conclude that we obtain a rarefaction wave as shown in the sketch.
Note also that limt!1 � (t) = 1=2: We can also note that the solution outside the limit
characteristics

x (t) = �1� e
�"t

"
(45)

develop independent of the rarefaction wave, and here,

� (x; t) =
1

2
+

�
�0 �

1

2

�
e�"t; �0 = 0; 1: (46)

Within the expansion fan, the solution at (x; t) is given implicitly by �rst choosing �0 from

0 +
1� 2�0
"

�
1� e�"t

�
= x; (47)

i.e.

�0 =
1

2

�
1� "x

1� e�"t

�
: (48)

Thus,

� (x; t) =
1

2
+

�
�0 �

1

2

�
e�"t

=
1

2

�
1� "xe�"t

1� e�"t

�
(49)

(d) If we look at the situation in (c), the characteristics that start on each side of (and
close enough to) the origin will collide, as shown in �g. 5.
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Figur 5: The characteristics near the origin will collide for problem (ii). The graph shows
a stationary shock as argued for in the text.

A stationary shock in the origin gives a symmetric situation where the �-values on each side
of x = 0 is symmetric with respect to � = 1=2. This gives a continuous �ux over the shock
since j = � (1� �). The source term does not contribute if the width of the control volume
goes to 0. Besides, a control volume that is symmetric with respect to x = 0, does not
have a net change in the content, since the source function is antisymmetric with respect
to � = 1=2. Assuming that the shock is stationary, we then obtain the solution:

� (x; t) =

�
1
2
(1� e�"t) x < 0;

1
2
(1 + e�"t) x > 0:

(50)
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