
F U L W D � � g
m 1 1 1 1 1 �3 2 1
s �2 �1 0 0 0 0 �1 �2
kg 1 0 0 0 0 1 0 0

Table 1: Dimension matrix

TMA 4195 Matematisk modellering
Exam Tuesday December 16, 2008

09:00 �13:00
Problems and solution with additional comments

1 Problem

The necessary force (F ) to keep a ship at a constant speed (U) depends on its shape;
primarily the length (L), width (W ), and its depth into the water (D). In addition, the
water density, �, the water viscosity, �, and the acceleration of gravity, g, play a part.

Use dimensional analysis to �nd an expression for the force which includes the two most
famous dimensionless numbers in ship design:

Froude number: Fr = U=
p
Lg;

Reynolds number: Re = LU=�:

Ideally, a scale model1) of the ship should be tested experimentally in water by keeping
the dimensionless numbers for the model equal to those of the original ship. Is this really
possible?

Hints: [F ] = kgm=s2, [�] = kg/m3, [�] = m2=s, [g] = m=s2.
1)A scale model is a model of the ship with the same geometric shape, but with a smaller
size (Say, L =1m for the model, compared to 200m for the original ship).

Solution:

Using the information provided in the problem, we assume

F = f (U;L;W;D; �; �; g) : (1)

The dimension matrix follows immediately and is shown in Table 1.

The rank is 3, and there are several possibilities for core variables (avoiding F ): (U;L; �),
(g;D; �), (�; �;W ), � � � . However, if one aims for the Froude and Reynolds numbers, the
choice (U;L; �) looks reasonable. With 8 variables, there are 8 � 3 = 5 dimensionless
combinations.

Since Re involves � and Fr involves g, it is easy to arrive at the formula

F = �U2L2 � �
�
Re; F r;

W

L
;
D

L

�
: (2)
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The scale model keeps W=L and D=L unchanged, so if we forget those, we need to map
the function

�1 =
F

�U2L2
= �(Re; F r) (3)

for ranges of Re and Fr typical for the original ship. Assume that length of the model, Lm,
is equal to rL, where r is about 10�2. If we aim to keep Fr, we have to run the model with
Um =

p
rU , which looks feasible. However, for the same �, the Reynolds number would

then be a factor r3=2 o¤. The only way to compensate this would actually be �nd a �uid
with a correspondingly small viscosity, but this does not exist. If we start by keeping the
Reynold number (rather unrealistic!) we run into similar problems.

Scale testing of ships (e.g. at the Tyholt wave basins), is carried out by keeping the Froude
number (related to wave induced resistance) and neglecting the variation in the Reyleigh
number. The �rst analysis of this situation dates back to one of the founders of Fluid
Mechanics, Lord Kelvin. Read more about ship resistance on the Internet.

NB! This problem has many di¤erent solutions, all equally good as long as the set of
variables is the same, and the core variables are chosen properly.

2 Problem

A chemical reactor consists of a tank �lled with a solid catalyst. A �uid containing a
dissolved chemical with concentration cI �ows into the tank. The �uid �ow Q is measured
in volume per second and the available volume for the �uid inside the reactor is V . Some
of the chemical is converted into a product by the catalyst and this product leaves the tank
with the �uid stream. The concentration of non-converted chemical in the tank is c� (t�),
and this is also the concentration in the �uid leaving the tank.

No volume changes are involved in these reactions, and the reactor is well-mixed with no
signi�cant concentration gradients inside.

The catalyst�s e¢ ciency is measured in terms of a quantity a�, and the amount of chemical
converted per time and volume unit is a�c�. Moreover, the change in a� per time unit is
�kdc�a�. At the start of reaction, t� = 0, we have a� (0) = aI and c� (0) = cI .
(a)

Formulate the equations for the concentration of the chemical and the catalyst�s e¢ ciency,
and derive the time scales

T1 =
1

aI
; (4)

T2 =
1

kdcI
; (5)

What are these scales expressing?

In the following it is known that T1 � T2.

(b)
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Use one of the time scales, write t� = �T , and scale the equations so that

dc

d�
= �ca+ � (1� c) ;

da

d�
= �"ca; (6)

c (0) = 1; a (0) = 1; � � 0:

Explain the meaning of " and �.

Determine the functions C0 and A0 in the perturbation expansions c (�) = C0 (�)+"C1 (�)+
� � � and a (�) = A0 (�) + "A1 (�) + � � � .
(NB! Here and in the following two points we assume for simplicity that � = 1).

(c)

Use the other time scale and show that this leads to a singular perturbation system with
Eqn. 6 as the �inner�system.

Determine the �outer� solution to leading order, i.e., �nd a0 and c0 in the perturbation
expansions c (t) = c0 (t) + "c1 (t) + � � � and a (t) = a0 (t) + "a1 (t) + � � � .
(Hint: Derive and solve a separable di¤erential equation for a0, which, however, leads to
an implicit expression for the actual solution).

(d)

Carry out a matching of the inner and outer solutions above and state leading order uniform
solutions.

Solution:

(a) The conservation law for the chemical may be expressed in di¤erential form as

d (V c�)

dt�
= �V a�c� +QcI �Qc�: (7)

(All terms express change in mass per time unit). For the e¢ ciency we have similarly

da�

dt�
= �kdc�a�: (8)

The time scale T1 is derived from the decay of the chemical in a closed volume at the
beginning of the reaction,

dc�

dt�
= �aIc�;

+
c� = C exp (�t�= (1=aI)) : (9)

The time scale T2 relates to the decay in the e¢ ciency of the catalyst,

da�

dt�
= �kdcIa�: (10)
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There is also a third time scale, T3 = V=Q. This is simply the time it takes to �ll a volume
V with the �ow Q.

The most elegant derivation of the time scales is to follow Lin&Segel�s recipe:

T1 =
max jc�j

max jdc�=dt�j =
jcI j
jcIaI j

=
1

aI
;

T2 =
max ja�j

max jda�=dt�j =
jaI j

jkdcIaI j
=

1

kdcI
:

(b) We consider the following scales

c� = cIc; a
� = aIa; t

� = T�: (11)

This leads to

1

aIT

dc

d�
= �ac+ Q

aIV
(1� c) ;

1

TkdcI

da

d�
= �ca: (12)

It now obvious that T should be equal to T1, and

" =
1=aI

1= (kdcI)
=
T1
T2
: (13)

Moreover,

� =
T1
T3
: (14)

Since T1 � T2, " is a small dimensionless parameter, and Eqns. 6 represents a regular
perturbation problem. Now, � = 1, and the system is

dc

d�
= �ca+ (1� c) ;

da

d�
= �"ca: (15)

Inserting the power series in ", we obtain to the leading order

dC0
d�

= �C0A0 + (1� C0) ;
dA0
d�

= 0: (16)

In addition, the initial conditions, which may be satis�ed exactly, are

C0 (0) = 1; A0 (0) = 1: (17)

This leads to A0 (�) = 1, and
dC0
d�

+ 2C0 = 1; (18)
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that is,

C0 (�) =
1

2

�
1 + e�2�

�
: (19)

(c) By changing the time scale to T = T2 in Eqns. 12, and using t� = T2t, we obtain

"
dc

dt
= �ac+ (1� c) ;

da

dt
= �ca: (20)

which is a typical singular perturbation systemwith a small parameter in front of the highest
derivative. We also observe that � = t=", in accordance with Eqns. 6 being the �inner�
system of Eqn. 20. Inserting c (t) = c0 (t) + "c1 (t) + � � � and a (t) = a0 (t) + "a1 (t) + � � �
gives to leading order

0 = �a0c0 + (1� c0) ;
da0
dt

= �c0a0: (21)

From the �rst equation we obtain

c0 =
1

1 + a0
; (22)

and hence,
da0
dt

= � a0
1 + a0

: (23)

This is a separable equation which may be written�
1

a0
+ 1

�
da0 = �dt; (24)

and integrated to
ln a0 + a0 = �t+ t0; (25)

where t0 is an unknown constant. It is not possible to express a0 as an elementary function
of t.

(d) We have now obtained the inner solution

A0 (�) = 1;

C0 (�) =
1

2

�
1 + e�2�

�
; (26)

which also ful�l the initial conditions, and the outer solution,

c0 (t) =
1

1 + a0 (t)
;

ln a0 (t) + a0 (t) = �t+ t0 (27)

with one unknown constant t0.
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The matching principle in its simplest form requires that

lim
�!1

C0 (�) = lim
t!0

c0 (t) ;

lim
�!1

A0 (�) = lim
t!0

a0 (t) : (28)

Since A0 = 1, we therefore need that limt!0 a0 (t) = 1. This is ful�lled only if t0 = 1.

In addition, we also have to check that

1

2
= lim

�!1
C0 (�) = lim

t!0
c0 (t) = lim

t!0

1

1 + a0 (t)
; (29)

which is true since limt!0 a0 (t) = 1.

This �nally leads to the uniform solutions

au0 (t) = A0

�
t

"

�
+ a0 (t)� lim

�!1
A0 (�) = a0 (t) ;

cu0 (t) = C0

�
t

"

�
+ c0 (t)� lim

�!1
c0 (�) =

1

2

�
1 + e�2t="

�
+

1

1 + a0 (t)
� 1
2
=
e�2t="

2
+

1

1 + a0 (t)
:

(30)

3 Problem

Explain that in order to determine the stability of an equilibrium point u0 for the model
du=dt = f (u), it is usually su¢ cient to consider the sign of f (u) around u0. Apply this
for making a sketch of the bifurcation diagram indicating stable and unstable equilibrium
points in the (�; u)-plane for the model

du

dt
=
�
�+ u2 � 2u� 1

�
(�+ u) : (31)

(It is not necessary to state the exact expressions for the equilibrium points or consider
points requiring higher order analysis).

Solution: We observe that u (t) increases when f (u) > 0 and decreases when f (u) < 0.
If we start from a point u1 near u0, we will drift towards u0 if f (u1) < 0 and u1 > u0,
or f (u1) > 0 when u1 < u0. The opposite gives a drift away from u0 (Needs to be more
careful if f 0 (u0) = 0).

Relating this to the derivative test requires Taylor�s Formula:

f (u)� f (u0) = f (u) =
df

du
(u0) (u� u0) + o (ju� u0j) : (32)

(not needed for the exam).

Here the equilibrium points occur for�
�+ u2 � 2u� 1

�
(�+ u) = 0; (33)
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Figure 1: Bifurcation diagram for Problem 3. Red is unstable and green is stable.

that is,
u0 = ��; (34)

or
u20 � 2u0 � 1 = ��: (35)

The �rst equation represents a line and the second a parabola in the (�; u)-plane, as sketched
on Fig. 1. It is convenient �rst to draw the curves and determine the (unique!) sign of
f (u) in each region (shown with blue symbols on the graph). Then stability/instability is
determined by moving vertically around the equilibrium points.

4 Problem

A part of a water cleaning system is modelled as a tube (along the x�-axis) of length L where
polluted water �ows with constant velocity V . The tube also contains absorbers that remove
the pollution. The concentration of pollutant in the water is c�, measured as amount per
length unit of pipe. Similarly, the amount of absorbed pollutant per length unit of pipe is
denoted ��. Some of the absorbed pollutant will over time re-enter the water stream. The
absorption and re-entering is modelled by the equation

@��

@t�
= k1 (A� ��) c� � k2��: (36)

(a)

State the integral conservation law for the pollutant and show that it leads to the di¤erential
form

@

@t�
(c� + ��) +

@

@x�
(V c�) = 0: (37)
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Based on the integral law, establish that a discontinuity in the concentrations, moving with
velocity U�, has to ful�l

U� =
c�2 � c�1

(c�2 + �
�
2)� (c�1 + ��1)

V; (38)

where (c�1; �
�
1) and (c

�
2; �

�
2) are the concentrations on the respective sides of the discontinuity.

(b)

Introduce suitable scales and show that the equations may be written

@

@t
(c+ �) +

@c

@x
= 0; (39)

"
@�

@t
= (1� �) c� ��: (40)

Explain the meaning of " and � (Hint: Use the same scale for �� and c�).

Assume that the tube is in�nitely long in both directions and consider analytic solutions of
Eqns. 39 and 40 in the form of �fronts�, travelling with velocity U :

c (x; t) = C (x� Ut) ; (41)

� (x; t) = R (x� Ut) : (42)

We limit ourselves to the special case where C (�) and R (�) ( � = x� Ut) satisfy

lim
�!�1

C (�) = 1; (43)

lim
�!1

C (�) = 0; (44)

lim
�!�1

R (�) =
1

1 + �
; (45)

lim
�!1

R (�) = 0: (46)

(c)

Insert 41 and 42 into Eqn. 39, integrate once, and use the behaviour at �1 and 1 to
determine U and a simple relation between C and R. Use this information and Eqn. 40
to determine C (�) and R (�). How is the behaviour of the solution when "! 0?

(Hint: The equation
dy

d�
= y

�
�1 + y

M

�
(47)

has a solution
y (�) =M

1

1 + exp �
(48)

for 0 < y < M).

(d)
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Assume " = 0 in Eqn. 40 so that the system (39 and 40) simpli�es to

� =
c

c+ �
;
@

@t
Q (c) +

@c

@x
= 0; (49)

Q (c) = c+
c

c+ �
; �1 < x <1; t � 0: (50)

Consider the initial condition

c (x; 0) =

�
1; x < 0;
0; x > 0:

(51)

Show that the corresponding solution of Eqn. 49 develops a shock. Determine the shock
velocity from the expression in point (a) and compare to the result in (c).

Solution:

(a) Consider a control volume between x�1 and x
�
2 including both the �uid and the absorbers.

Since the �ux is V c�, we obtain

d

dt�

Z x�2

x�1

(c� + ��) dx� + V c� (x�2; t
�)� V c� (x�1; t�) = 0: (52)

The standard argument, interchanging derivative and integral and the integral mean value
theorem leads to

@

@t�
(c� + ��) +

@

@x�
(V c�) = 0: (53)

In order to derive U , we put the control volume around the discontinuity. The conservation
of pollution requires (�1�refers to the left of the shock, and �2�to the right):

d

dt�

Z x�2

x�1

(c� + ��) dx� + V c� (x�2; t
�)� V c� (x�1; t�)

= � lim
�t�!0

[(c�2 + �
�
2)� (c�1 + ��1)]U�t�

�t�
+ (V c�2)� (V c�1) = 0:

Thus,

U� =
c�2 � c�1

(c�2 + �
�
2)� (c�1 + ��1)

V:

(b) The equations and the hint suggest the following scaling:

x� = Lx;

t� =
L

V
t

�� = A�;

c� = Ac; (54)

Thus
@

@t
(c+ �) +

@c

@x
= 0; (55)

"
@�

@t
= (1� �) c� ��; (56)
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where

" =
1= (k1A)

L=V
; (57)

� =
1= (k1A)

1=k2
: (58)

Similarly to Problem 2, both " and � are quotients between time scales. The time scale
L=V is the transverse time for the �uid, 1= (k1A) is the scale for absorption, and 1=k2 the
typical time for re-entrance of pollution into the stream.

(c) We introduce the trial solution in Eqn. 55 and let � = x� Ut:

�U dC
d�
� U dR

d�
+
dC

d�
= 0: (59)

Thus,
�U [C (�) +R (�)] + C (�) = const. (60)

Letting � !1 shows that the constant is equal to 0, whereas � ! �1 gives

�U
�
1 +

1

1 + �

�
+ 1 = 0; (61)

or

U =

�
1 +

1

1 + �

��1
: (62)

Since C (1� U)� UR = 0, we have

C =
U

1� UR = (1 + �)R; (63)

and the ratio between C and R is thus constant for all �-s!

Inserting this into the second equation, leads to

�"U dR
d�

= (1�R) (1 + �)R� �R

= R� (1 + �)R2: (64)

From the equation in the hint, which is a simple modi�cation of the logistic equation, we
obtain (not bothering about an arbitrary shift of the origin):

R (x; t) =
1

1 + �

1

1 + exp x�Ut
"U

;

C (r; t) = (1 + �)R (x; t) =
1

1 + exp x�Ut
"U

; (65)

U =

�
1 +

1

1 + �

��1
:
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When "! 0, the solution approaches a shock occurring at x = Ut.

(d) Even if it is simple to work directly with Eqn. 49, the equation may be transformed
to our familiar form by �rst observing that

@

@t
Q (c) +

@c

@x
= q (c)

@c

@t
+
@c

@x
= 0: (66)

And since

q (c) =
dQ (c)

dc
= 1 +

�

(c+ �)2
; (67)

is always strictly positive, we may just as well consider

@c

@t
+

1

q (c)

@c

@x
= 0: (68)

The kinematic velocity, 1=q (c), is strictly increasing with c, and hence characteristic lines
starting from x < 0 will overtake the lines starting at x > 0, thus leading to a shock
situation (the characteristics move into the shock). The speed of the shock was considered
in point (a), and the scaled version for the shock velocity is

U =
c2 � c1

(c2 + �2)� (c1 + �1)
=

0� 1
0�

�
1 + 1

1+�

� = �1 + 1

1 + �

��1
: (69)

This is equal to the velocity in (c), and shows that for this case, the continuous front
solutions of the full system decay nicely into the shock solution of the degenerate system
(" = 0).
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