The Method of Caracteristics

Cauchy problem for quasi-linear PDEs:

$$
\begin{cases}a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) & \text { in } \Omega \subset \mathbb{R}^{2}, \tag{1}\\ u(x, y)=\bar{h}(x, y) & \text { on curve } \gamma:(f(s), g(s)) .\end{cases}
$$

Idea: PDE \rightarrow ODEs, $u(x, y) \rightarrow(x(t), y(t), z(t))$ where $z(t)=u(x(t), y(t))$.
Characteristic equations:
(2) $\left\{\begin{array}{lll}\dot{x}=a(x, y, z), & t>0 ; & x(0)=f(s), \\ \dot{y}=b(x, y, z), & t>0 ; & y(0)=g(s), \\ \dot{z}=c(x, y, z), & t>0 ; & z(0)=\bar{h}(f(s), g(s)) .\end{array}\right.$

Implicit solution: $u(X(t, x), Y(t, s))=Z(t, s)$ when (X, Y, Z) solve (2).
Explicit solution: $u(x, y)=Z(T(x, y), S(x, y))$ when $\binom{x}{y}=\binom{\boldsymbol{x}(\mathbf{t}, \boldsymbol{s})}{\boldsymbol{y}(\mathbf{t}, \boldsymbol{s})} \underset{\text { invert }}{\longrightarrow}\binom{t}{s}=\binom{\boldsymbol{T}(x, y)}{\boldsymbol{s}(x, y)}$
Theorem:
The method works and produce the unique C^{1} solution $u(x, y)=Z(T(x, y), S(x, y))$ of (1) close to $\left(x_{0}, y_{0}\right) \in \gamma$ if
(i) a, b, c, \bar{h} is C^{1} near $P_{0}=\left(x_{0}, y_{0}, \bar{h}\left(x_{0}, y_{0}\right)\right)$
(ii) γ is C^{1} and non-characteristic: γ not parallel to (a, b) at P_{0}, or equivalently

$$
\left|\begin{array}{ll}
f^{\prime}\left(s_{0}\right) & g^{\prime}\left(s_{0}\right) \\
a\left(P_{0}\right) & b\left(P_{0}\right)
\end{array}\right| \neq 0 \quad \text { where } \quad f\left(s_{0}\right)=x_{0} .
$$

