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1 INTRODUCTION

In this part we shall consider concepts and approaches for models based on conservation
principles. Some of the material will be relatively easy, at least for students with some
background in �uid and continuum mechanics. Nevertheless, it is important to see that
the principles are generally valid and applicable for modeling in many other contexts than
traditional mechanics.

It is di¢ cult to discuss conservation principles without getting involved with partial
di¤erential equations, but we shall mostly be interested in the qualitative theory and the
general behavior of the solutions, and not very speci�c analytical or numerical solution
methods. Below, the term �uid is used both for liquids and gases. A �rst aid course about
�rst-order quasi-linear partial di¤erential equations is found in an appendix. It is designed
for readers without any knowledge of partial di¤erential equations beyond calculus.

In many models we apply continuous distributions or densities in space where the phe-
nomenon we consider is discrete. Typical examples could be the density of bacteria, people,
cars, and the like. In such cases, the models implicitly assume a kind of continuum hypoth-
esis similar to the one in continuum mechanics. However, such an approach has obvious
limitations, and it is important to be aware what the models are really good for. It leads,
e.g. to absurdities to insist on mathematical de�nitions based on limits to 1 or 0. In
the physical world "0" is a few orders of magnitudes below and �1�some orders of mag-
nitudes above where we are located. When we say that ��x ! 0�, we actually mean
that �x is small compared to the scale where we are located, and not that �x really goes
to 0 in the mathematical sense. This is similar to talking about stationary conditions in
time from �1 and 1. In elementary particle physics the eternity could well be 10�10s!
Scaling considerations that we have covered earlier, help us to assess the reliability of our
assumptions.

We should distinguish between establishing a model and solving the equations after they
have been formulated in a mathematical model. The latter is the theme of the courses in
analytical and numerical solution of ordinary and partial di¤erential equations. Although
enthusiasts advertise numerical software that can solve any di¤erential equation, it is still
far from that we can leave to the computer to understand what is really happening. As
numerical tools are becoming more advanced, it is, on the contrary, and increasing demands
for mathematical expertise and analysis of the equations. Today, serious customers require
that calculations based on numerical models should be documented to be reliable. Only
thorough mathematical and numerical analysis, and not least physical and engineering
insight, can help with this. Many of the analytical solutions for idealized problems that are
known from the theory of partial di¤erential equations are useful in this respect. Scaling
arguments show that the so-called fundamental solution of the heat conduction equation
has far greater applicability than is usually mentioned in the mathematics courses. In a
way, fundamental solutions and other solutions from idealized mathematical situations are
the cornerstones that give us insight and set limits.
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Figure 1: Pragmatic de�nition of density at a point in space: The mass over volume ratio
is reasonably stable for rmin < r < rmax, but the limit when r ! 0 does not exist and makes
no sense.

2 BASIC CONCEPTS

2.1 Density

Although we perceive water and air as quite homogeneous and uniform physical materials,
we all know that this is only when considered from our own length-scale. If we made an
imaginary sphere with radius r and center at x in air and could calculate the mass within
the sphere, m (r), the mathematical de�nition of the density of the air in the point x would
be

� (x) = lim
r!0

m (r)

4�r3=3
(1)

If we really were able to perform this experiment, and plot the ratio in a graph as a function
of r, we would however see something like in Fig. 1. When r becomes less than rmin (about
10�7m for the air around us), the ratio begins to �uctuate, and it is certainly no sense in
talking about a limit when r goes to 0, as we do in mathematics. Conversely, if r is too
large, the ratio will no longer be constant because the air inside the sphere is no longer
uniform. As you understand, we must add to the de�nition of density an assumption that
we stop the limit process in the right place, and that our de�nition of the density of air
only has meaning for phenomena with a length scale between rmin and rmax. As applied
mathematicians, we have to bear with density not being particularly �well-de�ned�. This
does not create major problems for air and water in most of our daily situations, but for
high vacuum technology, rmin may well be of the same scale as the apparatus.

Let us consider some quantity that we describe by a density ' (x; t). The amount within
a given closed region R of space may be expressed by the volume integral,

M (t) =

Z
R

' (x; t) dV: (2)

Although one immediately think of density as amount per volume unit, there is nothing
wrong in de�ning the density as the amount per of area unit, like 80g/m2 for ordinary
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writing paper. Similarly, for a thin iron wire the useful density becomes weight per unit
length.

In the introduction to [11], the authors have two examples which illustrate how it is
possible to think of continuous densities in two quite extreme cases. One example discusses
how the spiral structure of galaxies can be modeled as density waves in a gravitational
plasma in which the galaxies are modeled as a continuum characterized by the mass density
of the stars (C. C. Lin was in fact one of the main contributors to this theory). The second
example discusses instabilities in the density of amoebas during food shortages, the density
is the number of amoebas per area unit, also regarded as a continuous function of the
position on the surface they live (this model and analysis of it was developed by the second
author, L. A. Segel).

In mathematical modeling we therefore talk about densities in many other situations
than we know from mechanics. The density of various foreign substances, such as conta-
minants in water, is also a relevant example. Within the air pollution modeling, the most
advanced mathematical models consider hundreds of di¤erent components, each of which
is characterized by its density. In addition, the components interact, decay chemically, are
transported with the wind and become mixed in the air masses, or simply fall down. Oil
reservoir engineering applies complicated mathematical models for tracing various oil and
gas components in porous rocks.

The heat or energy content in materials may be expressed as energy per volume unit.
This will in the simplest case with constant speci�c heat be proportional to the temperature.
Entropy density appears in models that deal with heat conduction and heat transfer. Some
densities lead us into mathematical problems (so-called singular densities) which we shall
return to below in the section about sources and sinks.

In continuum mechanics we call quantities that passively follows the �ow for mater-
ial variables. The most common material variables in mechanics are mass, momentum,
vorticity and energy, which, in a continuous medium, are described by

� mass density
�v momentum density
O� �v Vorticity density
e� energy density

(3)

where v is the velocity of the medium. Impurities or other additives
that passively follow the �ow, are also material variable. The concentration of plankton in
the water is therefore a material variable as long as it does not move on their own. On the
other hand, a school of herring will usually not count as a material variable!

Within biology it is common, as in the example by L. A. Segel, to operate with continuous
density functions of animals, bacteria and plants. This allows one to create models which
describe the motion of animal herds, bacterial cultures, the spread of epidemics, and the
like. We shall later look at a situation where we model the density of cars along a road as
a continuum.

5



2.2 Flux

Flux is about transport or �ow of something. The term has actually various meanings in
science, but here it is only connected to the motion. If we stand by a road and watch the
cars passing, the average number of cars passing per minute will be what we de�ne the �ux
of cars. Flux includes the direction of the �ow, so the �ux of cars should be separated into
�ux to the right, and �ux to the left.

We will meet �ux in a lot of di¤erent situations. To �x ideas, let us consider the �ow
of some material in space. Standing at a �xed point x we observe that it passes, but in
order to quantify how much is �owing, we put (an imaginary) open small window frame
d� into the stream at x and observe how much is passing through the frame per second.
It is convenient to present the measurements as amount per second and area unit, since a
window twice as large and with the same orientation will allow twice as much material to
pass through. The orientation of the frame is uniquely de�ned by a �xed normal vector
n attached to the frame. If we change the orientation and hence the normal vector to
the opposite direction, the �ux changes sign. The maximum amount will �ow through the
frame if we align n with the direction of the �ow, and this direction is what we de�ne to
be the direction of the �ux. Flux can therefore be most easily described as a vector �eld,
j (x; t), where the direction of j indicates the transport direction, and the size, jjj, the
amount per time and area unit. Nothing passes through the frame if n is orthogonal to
j. In general, the amount dM that passes through d� (with orientation n) during a time
period dt is thus

dM = j � nd�dt: (4)

The total amount �owing out through a surface � in space with normal vector n per unit
of time is now given by the surface integral,

dM

dt
=

Z
�

j � nd�: (5)

By means of the Divergence Theorem from vector analysis, it is possible to rewrite the
surface integrals over the closed surface @R of a volume R asZ

@R

j � nd� =
Z
R

r � jdV: (6)

We shall later see that some care must be exercised when applying the Divergence Theorem.

For a material variable with density ', passively following a continuous �ow with a
velocity vector �eld v, the �ux has a particularly simple form, namely, j ='v. This follows
from Fig. 2, where an amount 'dV passes through d� during the time dt. Simple vector
calculus gives dV = d� � jvjdt � cos� = v � nd�dt. Therefore, the amount passing through
d� per time unit will be

Q =
'dV

dt
= 'v � nd� = j � nd�: (7)

The �ux for this particular case may be written j = 'v, and the total �ow of the material
through a surface � per time unit is

Q =

Z
�

('v) � nd�: (8)

6



dσ

v
n

dV

|v|dt

S α

dσ

v
n

dV

|v|dt

S α

Figure 2: Derivation of the expression for the �ux of a material variable.

There exist a lot of di¤erent expressions for �ux. In a practical modeling situation it may
sometimes be di¢ cult to come up with a good model. The expression for the turbulent
dispersion and transport of material considered later in this note is not yet fully resolved,
despite more than 100 years of active research. In electricity, we have in the general form
of Ohm�s law that the �ux of electric current, j, is given by j = �E where � is the material
conductivity and E electric �eld strength. In electromagnetism, there electromagnetic
radiation carries energy, the energy �ux is given by Poynting vector, P = E�H.
We mentioned in the previous section that plankton could be a material variable. Now

it is known that plankton to some extent is attracted by light, therefore, will set up a �ux
directed towards the light.

Of the more curious models of �ux, we have the assumption that schools of �sh tend to
move along the gradient of its well-being function, g, such that

j / Og: (9)

We shall later return to other models of �ux, e.g. di¤usion generated �ux.

2.3 Sources and Sinks

A source produces a certain amount of substance per time unit, and we may de�ne a sink
as a source with negative output, hence we only discuss sources. Mathematically, a study
of a source in the point x0 could be carried out by considering a ball R of radius r around
x0, then computing Z

@R

j � nd�; (10)

and see what happens when r ! 0. Again, we must have the same reservations in mind
that we had for de�nition of density.

One usually distinguishes between distributed and singular sources. For a distributed
source, the limit value of

lim
r!0

R
@R
j � nd�

4�r3=3
(11)

7



exists, and when x0 varies, it de�nes a function, a so-called production density q (x; t) that
expresses the production per time and volume unit. The production density is related to
divergence of �ux �eld if the �ux and its divergence are nice and continuous functions.
Applying the Divergence and Mean Value Theorems,Z

@R

j � nd� =
Z
R

r � jdV = (r � j) (x0)� 4�r3=3; jx0 � x0j < r; (12)

and thus,

lim
r!0

R
@R
j � nd�

4�r3=3
= lim

r!0
(r � j) (x0) = (r � j) (x0) : (13)

In conclusion,
q (x; t) = r � j (x) (14)

Obviously, for a certain production density, the total production in the volume R during
the time from t1 to t2, is

Q (t) =

Z t2

tt

Z
R

q (x;t) dV dt: (15)

The simplest singular sources are the point sources. For point sources we have, as the
name indicates, only production from a single point x0. This is an idealized situation where,
in practice, q (x; t) only di¤ers from zero near x0. For a ball R around x0 as considered
above, Z

@R

j � nd� (16)

will stay constant move towards r ! 0, or more general be a function of time. If we were
to describe a point source at x0 by a production density, this would be 0 for x 6= x0, while
the integral over an arbitrary small region containing x0 would be di¤erent from 0. Regular
functions with this property do not exist, but as you probably know, one has introduced
generalized functions (also called distributions) to be used in such situations. A point
source at x0 can thus be described using a so-called �-function,

q (x; t) = Q (t) �x0 (x) : (17)

Here Q(t) denotes the production rate (amount per time unit), and the �-function states
that production occurs in point x0. In general, the �-function at x0 is de�ned by the
property that Z

f (x) �x0 (x) dV = f (x0) : (18)

for all continuous functions.

Point sources are not completely covering the category of singular sources. Often, one
needs to model sources located along a surface or a curve in the area to be considered. For
example, one can think of a varying heat production along a curve (think of a electrical
resistance wire!) or a surface, as indicated in Fig. 3. This also leads into generalized
functions, but one can always model such sources as limits of point sources where these
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Figure 3: Illustration of various singular sources.

spreads out along a curve or on a surface. We leave to the reader to �nd out how the
above integral,

R
@R
j � nd�, will behave when r ! 0 for curve and surface sources.

In practice, it is often appropriate also to include the singular sources into the production
density, which then, in the mathematical sense, becomes a generalized function.

From physics (or distribution theory in mathematics), dipole and quadrupole sources are
also known. We will not meet these in any of the situations we shall consider here.

2.4 The Universal Conservation Law

Let us consider a geometrically closed, imaginary region R with boundary @R in space. In
modeling, such a region is often called a control volume. No part of the boundary needs to
be physical, so that material may �ow freely through.

In space we have a material with density � (x;t) moving with a �ux j (x;t; �), dependent
of x, t and �. For the sources and sinks inside R, we prescribe a generalized production
density q (x;t), which in general may contain singular sources. From what we have been
through, we see that the rate of change rate in the total amount in R may be written

d

dt

Z
R

� (x; t) dV: (19)

Now, this must be equal to minus what is disappearing over the boundary of R per time
unit (because of the de�nition of an outer unit normal, n),

�
Z
@R

j (x; t; �) � nd� (20)

plus what is produced (or disappears) in R per time unit,Z
R

q (x;t) dV: (21)

Altogether, we obtain the equation

d

dt

Z
R

� (x;t) dV +

Z
@R

j (x; t; �) � nd� =
Z
R

q (x;t) dV: (22)
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This is called a conservation law in integral form. The integrals and the derivative with
respect to t in the �rst term exist under fairly general conditions. Otherwise, the con-
servation law is the mathematical formulation that �nothing can disappear or arise from
nothing�, �a law of nature with an overwhelming empirical basis!

If � and v are su¢ ciently smooth functions of t and x, we can move the derivative with
respect to t under the integral sign, and otherwise use the Divergence Theorem,

d

dt

Z
R

�dV =

Z
R

@�

@t
dV;Z

@R

j � nd� =
Z
R

r � jdV: (23)

This means that Z
R

�
@�

@t
+r � j� q

�
dV = 0: (24)

Such a relation would actually hold for all nice R if � and v are smooth and nice functions in
the domain we are considering (Mathematically, it is su¢ cient that it holds for all spheres
in the domain). If �t +r � j�q is continuous, a result from analysis that says that if Eq.
24 hold,

�t +r � j�q = 0: (25)

(Suppose that for a �xed t, f (x) = �t +r � j�q is di¤erent from 0 at the point x0. Then
f is di¤erent from 0 for all x a neighborhood N � R around x0 since f is continuous.
Consequently, the integral of f over this neighborhood is also di¤erent from 0, contradictory
to the assumption). Eq. 25 thus apply when �, j, v and q are smooth, and this is the
conservation law stated in di¤erential form.

Since we later will see examples where one cannot move the derivation inside the inte-
gration sign, the integral formulation more general and fundamental than the di¤erential
formulation.

2.5 Conservation Laws in one Space Dimension

We shall discuss some properties of simple conservation laws, and limit ourselves to a simple
one-dimensional situation. The density, � (x; t), has now the dimension amount per unit
length. The �ux j (x; t; �) expresses the amount of material that passes the point x (in the
positive x-direction) per time unit, and will in general also be a function of t and �. Note
that the �ux is a vector directed along the x-axis. We shall in this discussion for simplicity
ignore sources and sinks.

For a �nite segment [A;B] of the x-axis, we may, since nothing disappears or is produced
in [A;B] write

d

dt

Z B

A

� (x; t) dx+ j (B; t; � (B; t))� j (A; t; � (A; t)) = 0: (26)
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Note that the boundary unit vector n is �i in A and i in B. If � (x; t) is a su¢ ciently
smooth function, we have for all possible subintervals [a; b] of [A;B] that

d

dt

Z b

a

� (x; t) dx =

Z b

a

@� (x; t)

@t
dx =

@� (�; t)

@t
(b� a) ; � � (a; b) : (27)

Thus, we may write

@� (�; t)

@t
+
j (b; t; � (b; t))� j (a; t; � (a; t))

b� a = 0: (28)

After a Taylor expansion of the second expression, and in the limit a ! b, we obtain the
di¤erential equation

@�

@t
+
@j

@x
+
@j

@�

@�

@x
= 0: (29)

This is the conservation law in di¤erential form, which mathematically is a (generally
nonlinear) hyperbolic partial di¤erential equation.

The following simple (but important!) example illustrates why one can not in general
write

d

dt

Z b

a

� (x; t) dx =

Z b

a

@� (x; t)

@t
dx: (30)

A solid medium has a discontinuity in the density from �1 to �2. The medium moves with
uniform speed U along the x-axis. Since the �ux in this case is just �U , the conservation
law with the discontinuity between a and b, gives

d

dt

Z b

a

�dx+ �2U � �1U = 0; (31)

or,
d

dt

Z b

a

�dx = (�1 � �2)U: (32)

However, since @�=@t is equal to 0 except at the discontinuity, say at x = xg, we could also
write

d

dt

Z b

a

�dx =

Z xg

a

@�1
@t
dx+

Z b

xg

@�2
@t
dx = 0 + 0 = 0: (33)

Consequently,
d

dt

Z
R

�dx 6=
Z
R

@�

@t
dx: (34)

This is a situation which may well occur in practice.

Without getting too far into the theory of partial di¤erential equations, we shall limit
ourselves to a situation where j is a known, di¤erentiable function of �. The di¤erential
equation is then reduced to

@�

@t
+ c (�)

@�

@x
= 0; c (�) =

dj

d�
: (35)
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The quantity c (�) has dimension velocity, and is called the kinematic velocity. In a
way which becomes more clear later, one could say that the kinematic speed represents the
speed of information in the problem.

To �nd the solution of this di¤erential equation, we make the following interesting obser-
vation: Suppose that the solution � (x; t) is already known. Then we also know c (� (x; t)).
Let us de�ne a vector �eld in the (x; t)-plane by

v (x; t) = fc (� (x; t)) ; 1g (36)

Field curves (with the curve length parameter s) are de�ned by the equations

dx

ds
= c (� (x; t)) ;

dt

ds
= 1: (37)

Assume that x = p (s) and t = q (s), for �1 < s <1 represent the curves. We calculate
the variation of � along a curve by means of

d�

ds
=
@�

@t

dt

ds
+
@�

@x

dx

ds
=
@�

@t
� 1 + @�

@x
� c (� (x; t)) = 0: (38)

This means that � is constant along the �eld curves. Consequently, c = c (�) is also constant
along the curves. But this implies in turn that the curves are straight lines. These �elds
lines are called characteristic curves or simply characteristics. Strictly speaking, the �eld
lines are the projection in the (x; t)-plane of the real characteristics in (x; t; �)-space, but it
is common also to call the projections for characteristics (In general, characteristic curves
do not need to be straight lines).

We are now going to �nd the solution � (x; t) for �1 < x <1, 0 � t, given that

� (x; 0) = f (x) : (39)

With the condition given at t = 0, this is an initial value problem, also called the Cauchy-
problem in this context.

However, if we are seeking the solution in a point (x1; t1), we �rst need to �nd the
characteristic curve through the point. Since the characteristics are straight lines, they
have equations

x = x0 + c (� (x0; 0)) t == x0 + c (f (x0)) t (40)

where (x0; 0) lies on x-axis. Accordingly, we must �rst �nd an x0 such that

x1 = x0 + c (� (x0; 0)) t1: (41)

Solving Eq. 41 implies solving an implicit (and in general nonlinear) equation in order to
�nd x0. Once we know x0;

� (x1; t1) = � (x0; 0) = f (x0) ; (42)

12
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Figure 4: The solution of the simplest kinematic wave equation is a �xed function translated
along the x-axis with constant speed.

since the value of � is constant along the characteristic. It is only possible to write the
solution in explicit form in simple cases. Let us, as very a simple example, consider the
equation

@�

@t
+
@�

@x
= 0: (43)

Here, c (�) � 1 so that the characteristics are the lines in (x; t)-plane de�ned by x = x0+ t.
Thus, we get � (x; t) = � (x0; 0) = f (x0) = f (x� t). The variation in the density at t = 0
thus moves without changing the shape towards the right with speed 1 as illustrated in
Fig. 4.

2.5.1 The Riemann Problem

Let us again consider the 1D conservation law in integral form,

d

dt

Z b

a

� (x; t) dx+ j (� (b; t))� j (� (a; t)) = 0; (44)

with the di¤erential formulation

@�

@t
+ c (�)

@�

@x
= 0; c (�) =

dj

d�
: (45)

For this conservation law, there are three basic solutions that typically arise, and even
if we can �nd this in most textbooks about Partial Di¤erential Equations, e.g. the book of
Whitham [18], we shall for completeness list them here as well. The three cases are solutions
to the so-called Riemann problem, where we want to determine � (x; t) for �1 < x < 1
and 0 � t when

�(x; 0) =

�
�1; x < 0
�2 x > 0

; �1 6= �2: (46)

The characteristics starting at x0 on the x-axis, in this case, are given by

x = x0 + c (�1) t; x0 < 0;

x = x0 + c (�2) t; x0 > 0: (47)

13
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Figure 5: Contact discontinuity: The characteristics are parallel.

2.5.2 Contact Discontinuity

If we has c (�2) = c (�1), the characteristics will be parallel for both positive and negative
x0. The region �1 < x < 1, 0 � t, is now divided into two parts, I and II (see Fig. 5)
where the solution � to the di¤erential equation are, respectively, �1 and �2. The solution
is called a contact discontinuity, since it is discontinuous along the contact of the two parts,
i.e. the line x = c (�1) t = c (�2) t. Somewhat surprising, this solution does not need to be
an acceptable solution for the conservation law. We shall see below that the conservation
law is only satis�ed if, in addition,

(�1 � �2) c (�1) + j (�2)� j (�1) = 0 (48)

and this does not need be the case even if c (�1) = j0 (�2) = c (�2). If this extra condition

is not met, the solution of the conservation law develops in a more complicated way. The
basic situation is however when the condition is ful�lled.

2.5.3 Rarefaction Wave

If c (�1) < c (�2), the characteristics that start outside the origin have to go as shown in
Fig. 6. The solution in regions I and III are thus �1 and �2, respectively.

If, c (�) is monotonically increasing when � goes from �1to �2, the solution in region II
becomes what is called an elementary rarefaction wave, expansion wave, or expansion fan.
Here, all characteristics have to start at the origin. Therefore, the characteristics have all
the equation x = c (�) t, and consequently, the solution for a point (x; t) in region II is
given implicitly by

� (x; t) = c�1 (x=t) (49)

(The inverse function c�1 exists under the above assumption of monotonicity). We leave
to the reader to show that this solution really ful�l the conservation law.

Consider the following simple example where c (�) = �, and �1 = 0 �2 = 1. Then the
characteristics for x0 < 0 is simply x = x0, whereas x = x0 for x0 > 0 0 In region II de�ned

14
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Figure 6: The rarefaction wave.
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Figure 7: The situation when c (�1) > c (�2) requires the introduction of a shock.

by f(x; t) ; 0 < x < tg the solution is given by x = �t, i.e. � = x=t. Thus, the solution for
t > 0 becomes

� (x; t) =

8<:
1; x < 0;
x=t; 0 � x � t;
0; t < x:

9=; (50)

Try some other possibilities for c (�) and make sketches to see how things come out!

2.5.4 Shock Solution

If we have the reverse situation from above, namely that c (�1) > c (�2), the characteristics
will cross, as illustrated in Fig. 7 to the left. Although the solution outside the collision
area can be found using the characteristic method, this is of little help in the area where the
characteristics crosses. In order to resolve the situation, we have to go back to the original
conservation law and introduce a discontinuity, x = s (t), called a shock, as illustrated in
Fig. 7 to the right.

In order to determine the speed U = ds=dt of the shock, we consider interval [a; b] such
that it includes discontinuity. By calculating the change of the contents in [a; b], as outlined
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Figure 8: A control volume enclosing a discontinuity in the density. The change in the
content during a time interval �t is (�2 � �1)U�t:

in Fig.8, we obtain

d

dt

Z b

a

� (x; t) dt = lim
�t!0

� (�2 � �1)� U�t
�t

= (�1 � �2)U: (51)

The conservation law will now only be satis�ed if

d

dt

Z b

a

� (x; t) dx+ j� (b; t)� j (� (a; t)) = (�1 � �2)U + j (�2)� j (�1) = 0: (52)

(recall the situation for the contact discontinuity). Thus we derive that the shock speed
must be

U =
j (�2)� j (�1)
�2 � �1

; (53)

and the solution for t > 0 is thus

� (x; t) =

�
�1; x < Ut
�2; x > Ut

�
(54)

We shall �nally show a simple example where the same di¤erential equation may come
from di¤erent conservation laws. Let the density and the �ux depend of another function
u such that

� (x; t) =
1

n
u (x; t)n

j (x; t) =
1

n+ 1
u(x; t)n+1 (55)

The di¤erential formulation follows the conservation law @�
@t
+ @j

@x
= 0;leading to

@�

@t
+
@j

@x
= un�1

@u

@t
+ un

@u

@x
= un�1

�
@u

@t
+ u

@u

@x

�
= 0: (56)
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The di¤erential equation for u is therefore essentially the same regardless the value of n
we had the conservation law. The characteristics are the same in all cases, but the shock
speeds are di¤erent for di¤erent n-s:

U =
n

n+ 1

un+12 � un+11

un2 � un1
(57)

The example shows that if the solutions develop shocks, the shock can not be found from the
di¤erential equation alone. The position of the shock must be determined from the original
conservation laws. In some cases it is also necessary to bring in additional conditions in
order to determine a physically acceptable solution (This is more thoroughly covered in
courses in non-linear partial di¤erential equations).

3 MODELING OF ROAD TRAFFIC

Systematic studies of road tra¢ c started about 70 years ago in the homeland of the cars,
USA. During the 1950s also mathematicians began to get stuck in rush hour tra¢ c, and
more theoretical work appears in mathematical journals. An article by M. J. Lighthill and
G.B. Whitham in the Proceedings of the Royal Society entitled "On kinematic waves II.
A theory of tra¢ c �ow on long, crowded roads" from 1955 is one of the milestones in the
development. Mathematical modeling of road tra¢ c is a relatively wide �eld, and there is
much information on the Internet and in several textbooks.

The present material has been based on lectures and seminars in mathematical modeling
at NTNU over several years. The report published by US Transportation Research Board,
Tra¢ c Flow Theory is, as of this writing, available free of charge from the Internet [7].

Research claims that between 20�30 percent of tra¢ c jams on Norwegian roads would
disappear if each motorist is driving more e¢ ciently. Researchers at NTNU have in con-
trolled trials managed to double the �ux from 1800 to 3600 vehicles per hour just by
adjusting the drivers�behavior. Interestingly enough, it appears that sometimes the �ux of
cars may be larger when the tra¢ c is kept at 60km/h, compared to 90km/h. On the ring-
road around London, M25, the speed limits are constantly adjusted in order to optimize
the tra¢ c �ow.

Tra¢ c modeling can be approached frommany sides and applying many di¤erent mathe-
matical and statistical tools. It is reasonable to think of models based of individual vehicles
on a road where the speed is expressed as a function of road conditions and other vehicles
nearby. The models may contain stochastic elements such as variations in the drivers�per-
ception of what is a safe speed, a safe distance to the vehicle in front, and an acceptable
overtaking margin. Such models quickly become analytically complicated, but are suitable
for computer simulations. Queuing theory and other statistical models that describe the
randomness of real tra¢ c, are also widely used.

The article of Lighthill and Whitham suggests a continuum model for car tra¢ c. Tra¢ c
�ow is described in terms of density, �ux, sources and sinks, which consequently leads to
hyperbolic conservation laws. This theory is called the kinematic theory of road tra¢ c.
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The models can be re�ned by including the drivers�ability to respond to changes in tra¢ c
density, and how quickly they can adjust according to road conditions. The material below
is mainly taken from the books of Whitham and Haberman stated in the reference list.

3.1 Kinematic Theory

In kinematic tra¢ c theory, tra¢ c is modeled by means of a simple conservation law. The
density �(x; t) of cars on the road is expressed as the number of cars per unit length. The
term must of be considered somewhat pragmatic, as is often the case when we model a
collection of highly discrete objects as a continuous medium. We consider � as a piecewise
continuous function of position and time. Because of the car�s �nite size, it is reasonable
to assume that

0 � � � �max; (58)

where �max is the maximum density as calculated from the cars�average length.

The car velocity v is assumed to be a function of car density, v(�), so that v(0) = vmax
and v(�max) = 0. Thus, v decreases as � increases. A clear-cut relation between the cars�
velocity and density may only be reasonable on one-lane roads, but is also used for multi-
lane highways, where the car velocities vary both individually and from lane to lane. In this
case, one interprets v as the average speed, and measurements indicate this is a reasonable
assumption, at least for parts of the interval between 0 and �max.

If we assume that the speed of the cars is a function of �, v(�), a small argument gives
us that the �ux of cars, i.e. the number of cars passing a given point on the road per time
unit, can be expressed as

J = �v(�): (59)

In the tra¢ c literature �ux is often designated with the symbols k, or F , and the graph of
J as a function of � is called the fundamental diagram. Normally, J(�) tends to 0 when �
approaches 0 or �max, and is a concave function with a maximum value somewhere between
0 and �max. The conservation law becomes as before

d

dt

Z b

a

�(x; t)dx+ J(b; t)� J(a; t) =
Z b

a

q(x; t)dx; (60)

where the source term expresses cars entering or leaving the road. The di¤erential formu-
lation leads to a �rst order hyperbolic equation, and since J is only a function of �, we can
write the equation

@�

@t
+
@J

@x
=
@�

@t
+
dJ

d�

@�

@x
= q: (61)

If q = 0, the characteristics will be straight lines with slope (kinematic velocity) equal to
c(�) = dJ

d�
.

By applying the equations 60 and 61, we can examine what is happening around a
tra¢ c light crossing, when we have a varying density of tra¢ c, how the individual cars are
moving, etc. The car�s own motion is determined by di¤erential equation

dx

dt
= v(�(x; t)): (62)
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Figure 9: Speed, �ux and kinematic velocity as a function of car density for the standard
model.

Usually, c(�) will be a decreasing function of �. This will typically lead to situations
developing shocks if the tra¢ c is moving in the positive x-direction and � increases with
x. From the conservation law, a shock x = s(t) will have to satisfy

ds

dt
=
J(s+; t)� J(s�; t)
�(s+; t)� �(s�; t) ; (63)

Changes in tra¢ c conditions can be incorporated in several ways. If the road has a
narrowing, e.g., goes from two to one lane, it is reasonable that �max is reduced, whereas vmax
remains the same. This changes the fundamental diagram. At the start of the narrowing,
the �ux has to be continuous, whereas � will have a discontinuity.

If the road is slippery and the visibility is poor due to rain or fog, then vmax will decrease
whereas �max remains unchanged. This changes the fundamental diagram in a di¤erent way.

A very common kinematic model that is reasonably easy to work with analytically, is to
assume that v is a decreasing, linear function of �. After scaling, we obtain the equations

v(�) = 1� �;
J(�) = �(1� �);
c(�) = 1� 2�;

@�

@t
+ (1� 2�) @�

@x
= 0: (64)

Fig. 9 shows how the car velocity, the �ux and the kinematic velocity change for the this

model. Note that c (�) = d
d�
(�v) = v + �v0 (�), and therefore c (�) 6= v (�) when � 6= 0.

Below we shall use this model to analyze some simple situations.

3.1.1 Tra¢ c Lights

Assume that at x = 0, there has a been a red light for the cars for t < 0. To the left of the
light (x < 0), there is a dense queue of cars, � = 1, while at the the right (x > 0), there are
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Figure 10: Junction at x = 0, where the light changes from red to green.

no cars and � = 0. In all such problems, it is useful to outline a so-called x=t-chart that
describes the conditions, in particular how the characteristics behave, as shown in Fig. 10.
When t > 0, we have three regions. To the left is an area where � = 1, to the right a region
where � = 0, while in the middle there is an expansion wave with characteristics starting
at the origin,

x = c (�) t = (1� 2�) t: (65)

Within the central area � = 1
2

�
1� x

t

�
, and the complete solution becomes for t = t0

� (x; t0) =

8><>:
1; x � t0;

1
2

�
1� x

t0

�
�t0 < x < t0;

0 x � t0:
(66)

Suppose you are sitting in a car at x = �1 for t = 0. What will be your own motion for
t > 0? From Fig. 10 we observe that you will start to drive at t = 1, and then your own
path, y(t), will be controlled by the di¤erential equation

dy

dt
= v (�) = 1� 1

2

�
1� y

t

�
=
1

2

�
1 +

y

t

�
; y(1) = �1: (67)

The equation is thus 2t _y � y = t, with general solution y (t) = At1=2 + t. Since y (1) = �1,
y (t) = t � 2t1=2. It is worth noting that the distance to the front car at x = t becomes
greater as time passes.

The situation we have analyzed, resembles what you encounter in a big running event:
if you have ambitions of �ghting in the lead, it pays to have a position as close as possible
to the head of the queue before the start.
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Figure 11: The situation with an increase in the car density.

3.1.2 Tra¢ c Clogging Up

Assume that there is a line of tra¢ c on the road where the density at t = 0 has the form

� (x; 0) =

8<:
�1; x � a;

�1 +
x�a
b�a (�2 � �1) a < x < b;

�2 b � x:
(68)

where �1 < �2. Between x = a and x = b, the car density increases linearly from �1 to �2.
The characteristics are given by x = x0 + (1� 2�) t, and for characteristics between a and
b this amounts to

x = x0 + t� 2
�
�1 +

x0 � a
b� a (�2 � �1)

�
t

= x0 + (1� 2�1) t� 2
x0 � a
b� a (�2 � �1) t: (69)

By inserting the time ts = 1
2
b�a
�2��1 , we see that x0 vanishes. This means that all charac-

teristics starting from the interval [a; b] meet in the point (xs; ts),

xs = a+ (1� 2�1)
1

2

b� a
�2 � �1

= b+ (1� 2�2)
1

2

b� a
�2 � �1

: (70)

The situation is sketched in Fig. 11.

For t > ts , we get a jump in density, a shock. The speed of the shock, has to be
determined from the shock condition, as discussed above,

U =
J(�2)� J(�1)
�2 � �1

=
�2 (1� �2)� �1 (1� �1)

�2 � �1
(71)

= 1� �1 � �2:
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Region � v (�) J (�) c (�)
x < 1 [0 1] 1� � � (1� �) 1� 2�
x > 1 [0 1

2
] 1� 2� � (1� 2�) 1� 4�

Table 1: The conditions surrounding a narrowing of the road..

One may wonder what is happening around such a shock, and in practice, the cars will
try to avoid colliding. However, when driving through the shock, the car velocity has a
discontinuity, and it is limited how fast it is possible to react!

3.1.3 When is the First Shock Formed?

The shock is formed when two characteristics collide. Let us look at two characteristics
starting at x0 and x0 +�t, respectively, and meeting at (xs; ts):

x0 + c(x0)ts = x0 +�t+ c(x0 +�t)ts: (72)

Thus,

ts = �
1

(c(x0 +�t)� c(x0)) =�t
: (73)

If we let �t! 0, the limit is

ts = �
1

dc
dx

��
x0

:

For a shock to form for t > 0, there has to be some x0 where dc
dx

��
x0
< 0, and the �rst time

this happens is

min ts = �
1

minx
dc
dx

: (74)

3.1.4 Narrowing the Road

On a road with two lanes for x < 1, one of the lanes is closed for x > 1, so that the
maximum car density for x > 1 is only half of the original. Table 1 shows how the �ux
varies with the density of each of the two parts of the road. There is no storage for cars at
x = 1. Therefore, the �ux around x = 1 must be continuous,

J (�(1�; t)) = J (�(1+; t)) : (75)

This means that the density is discontinuous (if di¤erent from 0). If the number of
vehicles passing x = 1 is as large as possible, the �ux is J = 1=8, and densities immediately
to the left and right of x = 1 are given by

J
�
��
�
= ��

�
1� ��

�
= J

�
�+
�
= �+

�
1� 2�+

�
: (76)

Thus,
�+ = 1=4; (77)
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whereas there are two possibilities for ��:

�� =
1

2

 
1�

p
2

2

!
: (78)

To see how both possibilities can occur, we connect this situation with a tra¢ c light at
x = 0, as in the �rst example. The situation is illustrated in Fig. 12.

We get a shock at x = 1 until the density � on the left side reaches the value ��1 =
1
2

�
1� 2�1=2

�
. Then we get a sudden jump in the density up to ��2 =

1
2

�
1 + 2�1=2

�
. Before

the narrowing, we get a queue where the density is ��2 . At the end of this queue another
shock is formed. We leave it to readers to consider how it is to drive through such a
situation.

3.1.5 Research Project: A Green Wave in In�nity Street?

In a long straight street the pedestrian crossings are organizesnd with tra¢ c lights. If the
tra¢ c lights are uncoordinated, the cars will need to drive and stop at uneven interval, and
the resulting average �ux of cars may be quite low. However, sometimes we hear that it is
possible arrange the lights in a so-called green wave, so that the cars may �surf�through
the street without having to stop. Is it really possible to streamline the tra¢ c by using
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the green waves, and what is the maximum possible average �ux? In this study we will
consider an idealized situation of this problem.

At In�nity Street pedestrian crossings are located at a constant distance L. There are
no side streets with opportunities for for the cars to leave or enter the street. The crossings
have all tra¢ c lights with a cycle of length S. This means that it is red in the period [0; r�),
then it is green in the period [r�; S). The cycle repeats itself continuously. To facilitate the
driving, the light cycles may be displaced in time in relation to each other, so that cycle
of crossing k + 1 starts some time before or after the cycle of crossing k. The maximum
vehicles density is �max, and the velocity is vmax. Tra¢ c follows the simple kinematic model
considered above. By scaling x and � the usual way, and using the time scale L=vmax we
obtain Eq. 64.

The length of the red period is denoted r and green period g. Here r = 1 correspond to
the shortest time it takes to drive between two tra¢ c lights separated by a length 1, and
the cycle length is r+g. The tra¢ c goes around the clock, and the problem is to maximize
the average �ux, �J . If the red period starts in x = 0 at t = 0, the average �ux will be

�J =
1

r + g

Z r+g

0

J(0; t)dt =
1

r + g

Z r+g

r

�(0; t)[1� �(0; t)]dt: (79)

It is clear that the theoretical maximum average �ux will be

�Jmax =
g

r + g
Jmax =

g

r + g

1

4
; (80)

since the maximum number of cars passes the crossing during the green period, and any-
thing better than that is impossible.

We shall �rst analyze a simpler situation with one tra¢ c light. Until time t = �g there
has been red light at x = 0. To the left of x = 0 there is a queue of cars. The light is
green up to t = 0, where it again changes to red. From the point (0;�g) there is now
an expansion wave which collides with the shock from (0; 0) in both positive and negative
x-directions, as shown in Fig. 13. The shock speed in this case is

U =
J2 � J1
�2 � �1

= 1� (�1 + �2): (81)

The density of the two characteristics that are symmetrical about the t-axis are �� = 1
2
��

and �+ = 1
2
+ �; respectively. Thus, the two shock speeds the same with the opposite sign:

U+ = 1� (0 + 1
2
� �) = 1

2
+ �;

U� = 1� (1 + 1
2
+ �) = �

�
1

2
+ �

�
: (82)

Consequently, the two shock curves are also symmetrical about the origin. We can calculate
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Figure 13: The expansion wave from (0;�g) collides with the shocks that start at t = 0.
The characteristics in the regions where � = 0 and 1 have speed 1 and �1, respectively.

the shock curve xc from

dxs
dt

= U+(xs; t) = 1� �+

= 1� c�1
�
xs
t+ g

�
(83)

= 1� 1
2

�
1� xs

t+ g

�
;

or
2(t+ g) _xs = (t+ g) + xs: (84)

The solution is
xs(t) = t+ g � g1=2(t+ g)1=2: (85)

The shocks follow this curve until they meet the characteristics that have started in t = r,
in other words, immediately after the red period from t = 0 to r is over. The areas with
� = 0 and � = 1 are therefore also symmetric about the y-axis.

Let us now look at a situation where the red period from x = 0 has lasted so long that
the areas in Fig. 13 reaches out to x = �1

2
. We �nd out where (�1

2
; t0) is by observing

that

1

2
= 0 + c(0)(t0 � r);

that is,

t0 = r +
1

2

1

c(� = 0)
= r +

1

2
: (86)
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Figure 14: Sketch of the complete solution. Note that we get a stationary shock at x = 1=2.

Then we put this into the equation for the shock:

1

2
= (t0 + g)� g1=2 (t0 + g)1=2

=

�
(r +

1

2
) + g

�
� g1=2

�
(r +

1

2
) + g

�1=2
; (87)

or

g =
r2

1
2
� r

: (88)

The solution requires that r < 1=2, and otherwise that g = r for r = 1=4. For these
combinations of g and r, we can now construct complete solutions for In�nity Street that
for any given ratio r=g 2 R+ provide maximum throughput. The construction is best
described on a �gure, see Fig. 14. Note that we have got a motionless shock for half
integers (the shock speed is 0, since the sum of the densities on both sides is 1 at any time).
If we want r=g to be large, this gives very short cycles. Even the maximum red period,
r = 1=2, which corresponds to the time it takes to cover half the distance between two
tra¢ c lights at maximum speed, seems to be rather short for practical purposes.

It appears that the symmetric structure may be generalized:

� At shorter distances between the crossings, the �leaves� are cut and meet in the
middle.
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Figure 15: Is this a possible solution?

� For larger distances the �leaves�are extended with two shocks that also meet in the
middle.

Is it possible to have a solution that is looking like the one in Fig. 15?

3.2 Generalizations of the Kinetic Theory

In practice, drivers try to compensate for changes in tra¢ c density by adjusting the speed
according to surrounding conditions. To avoid the development of shocks and thus ex-
tremely rapid changes in density, they will tend to slow down somewhat more than the
relationship v = v (�) suggests, and therefore avoid strong gradients in density build up.
Whitham models this by assuming that the drivers adjust the speed as

v = vk(�)� �
@�=@x

�
; (89)

where vk is the speed according to the kinematic theory above. This seems to be a rea-
sonable model since v = vk(�) if � is constant, whereas v is less than vk if � increases in
the driving direction, and the opposite when � decreases. The best part of the model, and
probably the reason why Whitham selected the particular form in Eq. 89, is that it leads
to a famous 2nd order parabolic equation for �, since J = �v = �vk(�)� ��x:

@�

@t
+ c(�)

@�

@x
� �@

2�

@x2
= 0; c(�) =

d(�vk)

d�
: (90)
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For the special case where c(�) = 1�2� we may use c instead of � as the dependent variable,
leading to the equation

@c

@t
+ c

@c

@x
� � @

2c

@x2
= 0; (91)

called Burgers Equation. Burgers equation is one of the most studied non-linear partial
di¤erential equations and is extensively described in, e.g. [18], Ch. 4.

It turns out that Burgers equation has solutions in the form of �migrating fronts�:

c(x; t) = C(x� x0 � at) = C(s); s = x� x0 � at:
lim
s!�1

C(s) = c1; lim
s!1

C(s) = c2: (92)

The front thus has a constant value on the curves x = x1+ at, and well-de�ned limits as x
tend to �1. We �nd such a solution by entering C in the equation:

� aC 0 + CC 0 � �C 00 = 0: (93)

By one integration we obtain
(C � a)2 = 2�C 0 + A; (94)

where A is another integration constant. Since we expect that also the derivative goes to
0 when x! �1, we see that

a =
c1 + c2
2

;

A =

�
c1 � c2
2

�2
: (95)

We now insert this and separate the variables:

� ds

2�
=

dC�
c2�c1
2

�2 � (C � a)2 : (96)

This gives

� s� s0
2�

=
2

c2 � c1
arctanh

�
2
C � a
c2 � c1

�
; (97)

which may be turned around to

C(s) =
c1 + c2
2

� c2 � c1
2

tanh

�
c2 � c1
4�

(s� s0)
�

= c1 + (c2 � c1)
�
1 + exp

�
c2 � c1
2�

(s� s0)
���1

: (98)

The function is a sigmoid (recall the equation for logistic growth). If c2 < c1, then C(s) is
a monotone decreasing front moving at velocity

U = a =
c1 + c2
2

(99)
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from to left to right. Note that since c = 1� 2� in this model, �(x; t) will be a monotone
increasing front moving with the same velocity. Moreover,

lim
x!�1

�(x; t) = �1 =
1� c1
2

;

lim
x!1

�(x; t) = �2 =
1� c2
2

; (100)

U =
c1 + c2
2

= 1� (�1 + �2):

The transition between � = �1 and � = �2 becomes sharper the smaller � is, but U is
independent of �. We see further that U is just the shock speed for the equation

�t + ��x = 0 (101)

for the initial conditions �(x; 0) = �1 for x < 0; and �(x; 0) = �2 for x > 0, and �1 < �2.
The behaviour in the limit �! 0 is therefore reasonable.

Whitham take the theory a step further by studying what happens when the cars need
some time to adjust to the proper speed. A driver has some �nite reaction time. If we look
at the speed of a particular car, vB, in a situation where tra¢ c density changes, the car
velocity could probably follow the equation

dvB
dt

=
1

�
(V � vB) ; (102)

where V is the ideal speed of the drivers wants to follow, as given by Eq. 102. This is a
well-known equation from control theory. If vB = v0 at time t = 0 and V is a given function
of t from 0 to t, it is possible to express vB as

vB(t) = v0e
�t=� +

Z t

0

exp(
t0 � t
�
)V (t0)dt0: (103)

If V = V0 is constant for t > 0, the solution becomes

vB(t) = (v0 � V0)e�t=� + V0: (104)

The e¤ect of the initial value will die out with time constant � , and if V varies slowly (that
is, the time scale for variations in V is longer than �), vB will tend to follow V .

We want to formulate Eq. 102 for the velocity v as a function of both t and x. The car
follows a path x(t), so that vB(t) = v(x(t); t)). This requires what in mechanics is called
the convective derivative,

dvB
dt

=
d

dt
v(x(t); t)

=
@v

@x

dx

dt
+
@v

@t
(105)

=
@v

@x
v +

@v

@t
:

29



Altogether, this gives two coupled equations for the motion

@�

@t
+
@(�v)

@x
= 0;

@v

@t
+ v

@v

@x
=
1

�

��
vk(�)� �

@�=@x

�

�
� v
�
: (106)

The equations are called a hyperbolic system, and we shall not go into the solution them in
full detail, but we see immediately that the system has equilibrium solutions:

� = �0;

v0 = vk(�0): (107)

The way of investigating whether the equilibria are stable or unstable is to write

� = �0 + r;

v = v0 + w; (108)

where r (x; t) and w (x; t) are small perturbations. After some arithmetic, we arrive at the
following system of equations, where we have inserted c0 = d

d�
(vk�)j�=�0 = v0k(�0)�0 + v0:

rt + v0rx + �0wx = 0;

wt + v0wx = �
1

�

�
w � c0 � v0

�0
r +

�

�0
rx

�
: (109)

The equations may be combined into a single linear 2nd order equation containing only r:

rt + c0rx = �rxx � �
�
@

@t
+ v0

@

@x

�2
r: (110)

We may recognize the �rst part,

rt + c0rx = �rxx;

as a linear convection/di¤usion equation, which is known to have solutions quickly dying
out with time. However, the last term, ��

�
@
@t
+ v0

@
@x

�2
r, may create problems for us if it

�dominates�over the di¤usion term �rxx. The standard method for studying such linear
equations is to examine Fourier components:

r(x; t) = aei(kx�!t): (111)

The Fourier component is a travelling wave with wave number k and frequency !. If this
is inserted into the equation, we get a so-called dispersion relation linking k and !:

�(! � v0k)2 + i(! � c0k)� �k2 = 0: (112)

Since the wave number k = 2�=�, where � is the wave length, k is a real number. On the
other hand, the frequency will generally be complex. Moreover, since

aei(kx�!t) = ae(Im!)tei(kx�(Re!)t); (113)
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we see that if the imaginary part of ! is greater than 0, the amplitude of the Fourier
component will grow exponentially in time, while is decreases exponentially if Im! < 0.
It is possible to show that

Im

r
�

�
< c0 < v0 +

r
�

�
: (114)

This tells us that v0 and c0 can not be too di¤erent. For all Fourier components to die out
we must have

jv0 � c0j <
r
�

�
: (115)

If we introduce vk(�) = 1� �, we see that v0 = 1 � �0 and c0 = 1 � 2�0 (in dimensionless
variables). Therefore, the perturbations above die out only when

� <

r
�

�
: (116)

This result, which does not seem to be mentioned in Whitham, is interesting in the light of
observations that have been reported. The tra¢ c seems to follow a fundamental diagram
from � = 0 and up to a certain �c which is considerably less than �max. For larger densities
the well-de�ned behaviour breaks down, and J are signi�cantly smaller than the funda-
mental diagram would indicate. It could therefore be interesting to know whether this is
due to instabilities of the type we found here, but the problem is to �nd realistic numerical
values to insert for � and �.

3.3 Individual Car Models

The theory in this section is mostly obtained from the book by Haberman, Sec. 64 [9].

Individual car models deal with individual cars on the road. With one lane, and no
possibility of passing, we can assume that each car adjusts its own speed relative to the
speed of the car ahead (assuming it is so close that the driver can see it). Let us denote
the position of the vehicle No. n in the queue by xn (t).

d2xn
dt2

= ��
�
dxn
dt

� dxn�1
dt

�
: (117)

If car number n has higher speed than the vehicle in front (number n � 1), car number n
will brake. Actually, there will be some delay in the reaction of drivers, so we should write

d2xn(t+ T )

dt2
= ��

�
dxn(t)

dt
� dxn�1(t)

dt

�
; (118)

where T expresses the drivers�response time. The equation may be integrated once:

dxn(t+ T )

dt
= �� (xn(t)� xn�1(t)) + dn: (119)
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In a uniform situation where all cars have the same speed and same distance, the density
will be

� =
1

xn�1 � xn
: (120)

In that case, the cars�velocity is thus

v =
dxn
dt

= � �

�� + d: (121)

The constant d is chosen so that v = 0 for � = �max; and this leads to the following
expression for v and the �ux J :

v = �

�
1

�
� 1

�max

�
; (122)

J = v� = ��

�
1

�
� 1

�max

�
: (123)

The model is called the California model. The model is not very realistic for small densities
since v ! 1 when � ! 0. If there are very few cars on the road, where will be no car in
sight most of the time, and then it is reasonable to move at maximum speed. A modi�ed
model would be to set

v = min

�
vmax; �

�
1

�
� 1

�max

��
: (124)

It is also possible to embed the drivers sensitivity for changes by assuming that � varies
with the distance to the car in front. We could for example assume that

� =
a

xn�1 � xn
;

which means that the sensitivity disappears when the distance is great. The Eq. (117)
then modi�es to

d2xn
dt2

= � a

xn�1 � xn

�
dxn
dt

� dxn�1
dt

�
;

which can still be integrated analytically to

dxn(t+ T )

dt
= �a ln jxn(t)� xn�1(t)j+ dn: (125)

A similar argument to the above then yields

v = a ln
�max
�
; (126)

J = �a ln
�max
�
: (127)
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This still causes v ! 1 when � ! 0, but here J ! 0 for both � = 0 and � = �max. The
model is called the Greenberg model, and, according to [18], it �ts the tra¢ c in the Lincoln
Tunnel from Manhattan to New Jersey when

a = 17:2 mph,

�max = 228 cars/mile. (128)

The model is still not entirely satisfactory, but the same idea could be taken further, e.g.
assuming that

� =
~a

(xn�1 � xn)2
: (129)

We then get a linear relationship between v and �. Measurements of �ux as a function
of density suggest a �nite derivative at � = 0, in line with v going to a �nite value when
�! 0.

3.3.1 Instabilities in a Queue

Driving in a queue, we may have experienced that it is uncomfortable to be behind drivers
who keep an irregular speed, and this may also be analyzed with individual car models.
With a �nite reaction time, the equations are no longer pure di¤erential equations, but
what is denoted Delay Equations. Consider two cars and assume that the speed v1of the
car in front vary periodically. It turns out to be convenient to work with complex solutions,
but the result using physical real periodic solutions will be the same. We therefore assume
that

v1(t) = 1 + ae
i!t; (130)

where the amplitude a is much smaller than 1. Assume that we have reached a stationary
situation where the following car has a similar variation in the velocity,

v2(t) = 1 + be
i!t: (131)

We put this into Eq. (119) and get

bi!ei!T = ��(b� a); (132)

or
b =

1

1 + i!
�
ei!T

a: (133)

Thus
jbj
jaj =

���� 1

1 + i!
�
ei!T

���� = 1r�
1� 2!

�
sin!T +

�
!
�

�2� : (134)

The amplitude of b will be greater than the amplitude of a if the denominator is less than
1 This occurs when

sin(!T ) >
!

2�
; (135)
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which can be expressed as
sin!T

!T
>

1

2�T
: (136)

Since sinx=x � 1, there is no danger as long as �T < 1=2, but if this is not the case,
there are low frequencies where the amplitude for the second car is larger than for the car
in front. With several cars in the line, a further magni�cation will occur for cars further
back. Good drivers will notice this and try to dampen the �uctuations in the speed. A
similar analysis could also be considered for a sudden braking of the �rst car.

4 CONSERVATION LAWS OF MECHANICS

It turns out that the physics of the continuum matter surrounding us, i.e. solid material,
liquids and gases, can be described in a compact way using the framework above, and this
is acknowledged in most recent books about continuum and �uid mechanics, for example
[15].

However, the laws of physics are basically laws for a given collection of matter. For
example, Newton�s laws are laws for one or more �mass points�. In the same way, a
thermodynamic system, as we consider it when formulating the �rst law of thermodynamics,
consists of a �xed collection of molecules. In continua like liquids and gases, where the
material is moving, we are mostly interested in formulating the laws for a �xed region of
space, that is, a control volume. The control volume will therefore contain di¤erent mass
particles at di¤erent times. .

In mechanics, a continuous medium in motion can be described in the Eulerian way by
considering the velocity v = v (x; t) at each point x, or we may use a Lagrangian description
in which we follow the mass particles as time goes by, x = x (t; a), a = x (0; a).

A material region R (t) is a section of the medium which at any time contains the same
mass particles. Mathematically, R (t) is de�ned as R (t) = fx (t; a) ; a 2 R (0)g, and a
material region typically changes its shape and position as time passes, coinciding with the
control volume at one instant of time, say at t = 0.

In this section we shall brie�y review how the most important conservation laws of
�uid mechanics may be derived by applying a simple result from vector analysis, namely
Reynolds�Transport Theorem.

4.1 Reynolds Transport Theorem

From vector calculus we may know famous results such as the Divergence Theorem (also
called Gauss�Theorem), and Stokes�Theorem. Reynolds Transport Theorem is another
result in the same family. We introduce the theorem by �rst considering one-dimensional
integrals.
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Figure 16: De�nition of the regions I, II and III.

If we need to take the derivative w.r.t. to t of H (t) de�ned by

H (t) =

Z b(t)

a(t)

f (x; t) dx; (137)

it is possible �rst to write

H (t) = F (b (t) ; t)� F (a (t) ; t) ; (138)

where F is the anti-derivative of f with respect to the �rst argument, and then apply the
Chain Rule,

dH

dt
(0) =

d

dt

Z b(0)

a(0)

f (x; t) dx

�����
t=0

+ f (b (0) ; 0)
@b

@t
(0)� f (a (0) ; 0) @a

@t
(0) : (139)

This result is useful to know, and we see that in addition to the expected �rst term, we
have extra contributions because the integration interval changes with time.

Reynolds transport theorem is this identity when integrating over a moving region in
space. We shall assume that the region we are looking at, R (t), is enclosed by a moving
boundary, @R (t). Furthermore, we assume that the points on the boundary are marked so
that we can trace them as the time passes. In particular, all points on the boundary will,
at any time, have a velocity v (x (t)), where x (t) 2 @R (t).
We may then formulate Reynolds transport theorem for the integral of a function ' (x; t)

over the moving region R (t) as follows:�
d

dt

Z
R(t)

'(x; t)dV

�
t=0

=

�
d

dt

Z
R(0)

'(x; t)dV

�
t=0

+

Z
@R(0)

'(x; 0)v � nd�: (140)

The theorem requires that v and ' are su¢ ciently nice functions, and that R(t) is a nice
region, but we will not go into that here. The proof follows directly from the de�nition of
the derivative. We assume R(0) and R(t) are as outlined in Fig. 16. Let �i(t0) denote the
integral of ' over region �i�at time t, e.g.

�III(t) =

Z
III

'(x; t)dV: (141)
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In general, the regions I in II are de�ned by the parts of @R(0) where the velocity �eld
points in and out of R (0), respectively. From the de�nition of the derivative and Fig. 16
we have�

d

dt

Z
R(t)

'(x; t)dV

�
t=0

= lim
t!0

�III(t) + �II(t)� (�I(0) + �III(0))
t

= lim
t!0

�I[III(t)� �I[III(0)
t

+ lim
t!0

�II(t)

t
� lim

t!0

�I(t)

t
: (142)

The �rst limit value is just �
d

dt

Z
R(0)

'(x; t)dV

�
t=0

: (143)

For small t the parts I and II become thin shells such that we may use the volume elements
dV = v � ntd� for region II, and dV = �v � ntd� for region I. In the limit t! 0 we obtain

lim
t!0

�II(t)� �I(t)
t

=

Z
@R(0)

'(x; t)v � nd�

�������
t=0

: (144)

In many textbooks, one �nds that the theorem is stated assuming

d

dt

Z
R(0)

'(x; t)dV =

Z
R(0)

@'

@t
(x; t)dV: (145)

This is quite unfortunate for our applications and a direct error if ' has discontinuities
inside R (0) (recall the discussion in Sec. 2.5.4).

4.2 Mass Conservation

Mass conservation is a key principle in continuum mechanics. Here ' = �, i.e. the mass
density of the medium. Without sources and sinks, the mass within a material region R(t)
will be constant, since this is precisely the de�nition of a material region. Thus,

d

dt

Z
R(t)

�(x; t)dV = 0; (146)

and, consequently, we get by applying the transport theorem

d

dt

Z
R(0)

�(x; t)dV

�������
t=0

+

Z
@R(0)

�(x; 0)v(x; 0) � n(x; 0)d� = 0: (147)

Since there is nothing particular with time t = 0, we can for any time and an arbitrary
�xed control volume R write

d

dt

Z
R

�dV +

Z
@R

�v � nd� = 0: (148)
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This is the mass conservation law in integral form when we do not have sources or sinks
within R. Any sources/sinks will enter the expression as

d

dt

Z
R

�dV +

Z
@R

�v�nd� =
Z
R

qdV: (149)

and below this is discarded. Of course, we could see this immediately from the theory in
Sec. 2.4, since mass is a material variable and the �ux is �v.

As discussed in Sec. 2.4 we can, when � and v are su¢ ciently smooth, di¤erentiate
under the integral sign and apply the Divergence Theorem:

d

dt

Z
R

�dV =

Z
R

@�

@t
dV; (150)

Z
@R

�v�nd� =
Z
R

r � (�v)dV (151)

so that Z
R

�
@�

@t
+r � (�v)

�
dV = 0: (152)

Holding for all R, this then leads to the di¤erential formulation

�t +r � (�v) = 0: (153)

The �ow is called stationary if � and v are independent of time. Then
R
R
�dV will be

constant and the mass conservation reduces toZ
@R

�v � nd� = 0: (154)

Equation 154 can be directly used for calculations, as illustrated for the pipeline in Fig.
17. By letting R be as given in the �gure, the conservation law when the �ow is stationary
is Z

A1

�v � nd� +
Z
A2

�v � nd� +
Z
A3

�v � nd� = 0: (155)

By assuming � is constant and de�ning the velocity over the cross section of the tubes,

vi =
1

jAij

Z
Ai

v � nd�; (156)

we obtain
jA1j �1v1 + jA2j �2v2 + jA3j �3v3 = 0: (157)

(jAjj is the cross sectional area). As one understands, it is easy to generalize this to
arbitrary networks and otherwise include sources and sinks.

We immediately deduce the following special cases of the di¤erential formulation:

� Stationary �ow (no time variation): r � (�v) = 0

� Constant density (incompressible �ow): r � v = 0
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Figure 17: Stationary �ow in a network of pipes will obey the mass conservation.

4.3 Momentum Conservation

In mechanics, momentum (or linear momentum) is the product of a body�s mass times its
velocity. Besides mass conservation, the momentum conservation law is the most important.

For a continuum, the momentum density is de�ned as momentum per volume unit,
p = �v, where � is the mass density and v the velocity. The density is thus a three-
dimensional vector in space. Newton�s Second Law, stating that force is equal to mass
times acceleration, is a statement about a �xed collection of mass particles. Since a material
region R (t) always contains the same mass particles, Newton�s law applied to a material
region R (t) is just

d

dt

Z
R(t)

�vdV = �F(t); (158)

where �F(t) is the sum of all forced acting on the material region. By applying Reynolds
transport theorem at t = 0 we obtain0B@ d

dt

Z
R(0)

�vdV +

Z
@R(0)

(�v) (v � n) d�

1CA
t=0

= �F(0): (159)

For a �xed control volume R, the conservation of momentum may therefore be expressed
as

d

dt

Z
R

�vdV +

Z
@R

(�v) (v � n) d� = �F: (160)

The equation can be used to express the conservation of momentum in any direction: If a
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is a �xed unit vector in space, the scaler product with Eq. 160 gives

d

dt

Z
R

�vadV +

Z
@R

(�va) (v � n) d� = �Fa; (161)

where va = a � v and Fa = a � F. For a Cartesian coordinate system in space, the three
standard unit vectors give us three equations corresponding to the axes.

To get further, it is necessary to say something about forces acting on the mass in R. It
is common to distinguish between mass forces (also called body forces) and surface forces.
In general, it is possible to write

FB =

Z
R

fB(x; t)dV; (162)

for mass forces and

FS =

Z
@R

fS(�; t)d�; (163)

for surface forces.

The most common mass force is gravity,

Fg =

Z
R

�gdV: (164)

In the geophysical �uid �ow (such as oceans and atmosphere) the Coriolis force and the
centripetal acceleration are important. These are forces that arise because our control
volume is �xed on earth�s surface and is thus rotating with the earth. The Coriolis force is
given by

Fc =

Z
R

�(�2
� v)dV; (165)

where 
 is the angular velocity of the earth (2�=24hours = 7:3�10�5s�1). The centripetal
acceleration

Fs =

Z
R

�( �
� (
� r))dV; (166)

where r is the position vector from the centre of the earth. Electromagnetic forces are
other important examples of body forces.

The forces acting on the surface of R may be expressed in terms of the so-called stress
tensor of the medium. Stress is the force per unit area. The force can act along a surface
(shear stress) or orthogonal on the surface (normal stress). We refer to courses in mechanics
for further discussion of the stress tensor. If we equip space with a Cartesian coordinate
system, we may represent the stress tensor by a symmetric 3� 3 matrix,

T =

24 t11 t12 t13
t21 t22 t23
t31 t32 t33

35 : (167)
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For a small surface element d� with normal vector n the force acting on d� is given by

dF = T � nd�; (168)

and the momentum conservation law in integral form may be written

d

dt

Z
R

�vdV+

Z
@R

(�v)v � nd� =
Z
R

�fBdV+

Z
@R

T � nd�: (169)

If we are working with liquids, the stress tensor has contributions from pressure and viscos-
ity forces. The pressure acts orthogonal on a small area element within the �uid and has
the same value at a point no matter how the element is oriented. In addition, all common
liquids are more or less viscous. Viscosity can be seen as a type of internal friction which
provides resistance against deformations. For so-called Newtonian �uids, the shear stress
in the x-direction for a �ow with velocity u(y) parallel to the x-axis is given by

� = �
@u

@y
; (170)

where � is called dynamic viscosity. It may be shown (See, e.g. [10]) from the mathematical
properties of the stress tensor that the simplest expression consistent with Eq. 170 and
giving the static pressure p when the �uid is at rest has to be of the form

tij =

�
�p�2

3
�r � v

�
�ij + �

�
@vi
@xj

+
@vj
@xi

�
; i; j = 1; 2; 3; (171)

(indices refer to the standard Cartesian coordinate system). This expression leads to the
quite famous equation for the momentum balance in a Newtonian �uid,

@

@t
�v +r � ((�v)v) = �fB �rp+ �

�
r2v +

1

3
r(r � v)

�
; (172)

called Navier-Stokes Equation(s). If the liquid is incompressible and the density is constant,
the equation simpli�es to

@

@t
v +r � ((v)v) = fB �

1

�
rp+ �

�
r2v; (173)

since r � v = 0.

4.4 Energy Conservation

The �rst law of thermodynamics says that for a system in thermodynamic equilibrium, the
added heat will be used to perform work and change the system�s the internal energy,

dQ = dW + dE: (174)
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The energy may be expressed as speci�c energy e (energy per unit mass) so that

E(t) =

Z
R(t)

e�dV: (175)

Contrary to Q and W , the speci�c energy e is a material variable. Speci�c energy may,
e.g. consist of kinetic and inner energy per mass unit,

e = v � v=2 + u: (176)

Work performed by the system may be of di¤erent kinds. If we consider the work per unit
time (power), we have

(i) Work against the mass forces:

dWB

dt
= �

Z
R

fB � vdV (177)

(ii) Work against surface forces:

dWS

dt
= �

Z
@R

(T � n) � vd� (178)

(iii) Other work performed by the system (e.g. driving a turbine),

dWt

dt
: (179)

From the �rst law and Reynolds transport theorem, the general energy conservation law
becomes

d

dt

Z
R

e�dV +

Z
@R

e�v � nd� = dQ

dt
� dWt

dt
+

Z
R

fB � vdV +
Z
@R

(T � n) � vd�: (180)

In the same way as for mass conservation, we can also derive the di¤erential formulation us-
ing the Divergence Theorem, provided that the smoothness conditions are ful�lled. Further
information may be found in textbooks about continuum mechanics.

4.5 Comments and Examples

There are several other conservation laws than those presented here. In particular, the
conservation law for vorticity (r�v) is important for many applications in �uid mechanics.
Traditional mechanics and mathematics teaching is oriented towards di¤erential equa-

tions, i.e. di¤erential formulations. This is natural since there is a huge theory about the
existence of solutions, and techniques such as separation of variables, integral transforms,
Green functions, and perturbation methods for �nding solutions.
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Figure 18: How much force should we apply to keep a bent tube in position?

Nevertheless, modern textbooks of practical mechanics to a greater extent base their
arguments on integral formulations. The integral formulations are independent of the
choice of coordinate system and embodies the fundamental physical laws (which, after all,
manage the real world) more directly than di¤erential formulations. Integral formulations
may be used for practical tasks and a control volume need not be just a small box!

Conservation laws also apply to situations where di¤erential equations have shortcom-
ings, such as for discontinuous variables. This is especially important for treating shock
solutions.

While numerical models traditionally have been made from di¤erential equations by
replacing the derivatives with the �nite di¤erence approximations, one can also use the
integral formulation directly by dividing the computational region into a pile of boxes. The
equations for each box are then established based on the conservation laws. This guarantees
that the numerical solutions are compatible with the conservation laws. Finite Element
formulations and so-called weak solutions of di¤erential equations are also related to the
conservation laws in integral form.

Below we will look at three examples of how one can operate with conservation laws.
The �rst example should be familiar to anyone with some background in �uid mechanics.

The second example deals with the phenomenon of shock, and is typical for that type
of problems. The conservation laws provide conditions that help us to determine the
properties of the shock. In aerodynamics shocks are associated with supersonic speeds,
while the hydrodynamic shock in the example occurs at the very mundane speeds. This is
also the case for the third, somewhat more challenging, example.

4.5.1 Forces on a Pipe Bend

We consider a tube bend with stationary horizontal �ow, see Fig. 18. We know the pressure,
the cross-sectional area, density and the speed at both the inlet and outlet. The problem is
to �nd the forces Fx and Fy that we must apply in order to keep the bend in position. The
velocities are vectors with directions indicated by arrows, and we assume that the velocity

42



magnitude and the pressure are constant over the cross sections (A1and A2). Since the �ow
is stationary, the mass conservation requires

�1v1A1 = �2v2A2: (181)

For the momentum balance we must �rst get an overview of the forces on R, which, in
addition to the force needed to keep the bend in position, are composed of pressure forces:

(�F )x = p1A1 � Fx � p2A2 cos�;
(�F )y = �Fy + p2A2 sin�: (182)

Since conditions are stationary,
d

dt

Z
R

�vdV= 0; (183)

whereas Z
@R

�vxv � nd� = �1v1(�v1A1) + �2v2 cos�(v2A2);Z
@R

�vyv � nd� = �1 � 0 � (�v1A1) + �2(�v2 sin�)(v2A2): (184)

If this is inserted into the conservation law, we obtain

Fx = p1A1 � p2A2 cos�+ �1v21A1 � �2v22A2 cos�;
Fy = p2A2 sin�+ �2v

2
2A2 sin�; (185)

or, since �1v1A1 = �2v2A2 =M ,

Fx =M(v1 � v2 cos a) + p1A1 � p2A2 cos�;
Fy =Mv2 sin�+ p2A2 sin�: (186)

4.5.2 Flood Waves in Rivers

In this example we shall look at the simplest theory of �ood waves and water jumps in
rivers. Since the water level behind the water jump is higher than the level in front of the
jump, people and livestock along the river can be swept away by the water, or suddenly
�nd themselves in much deeper water than they appreciate. The reason for the jump could
be torrential rain, sudden emission of water from a power station or a dam break.

To model what happens, we shall consider water �owing down a slope with a relatively
small tilt angle �. The width of the �ow across the inclined plane is B.

We assume that the velocity of the water is directed down the slope and has value v, is
a function of position x and time t, and independent of z and y. This assumes that the
�ow is turbulent and that the water depth is not too large. In that case, the velocity is
approximately constant over depth, but close to the bottom we will have a boundary layer
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Figure 19: An idealized picture of a river.

where this assumption is not so good. Furthermore, we assume that the surface is de�ned
by z = h(x; t). To model the �ow, we use mass and momentum conservation. The situation
is illustrated in Fig. 19.

Let us �rst see what mass conservation provides. The conservation law has the general
form

d

dt

Z
R

�dV +

Z
@R

j � nd� = 0: (187)

We assume that the density � is constant and use dV = Bh(x; t)dx. The amount j that
�ows past a point x per unit time has the form

j(x; t) = �v(x; t) � (Bh (x; t)) : (188)

The �ux vector (amount per surface and unit time) is thus as expected

j (x; t) = �v (x; t) {̂: (189)

This may be inserted into Eq. 187 for a section of the river between x = a and x = b, while
using n = �{̂ at x = a, and {̂ in x = b:

d

dt

Z b

a

�Bh(x; t)dx+ [(�v) (Bh)]ba = (190)

d

dt

Z b

a

�Bh(x; t)dx+ [�v(b; t) �Bh (b; t)� �v(a; t) �Bh (a; t)] = 0: (191)

Note that the �ux orthogonal to the bottom and the surface is zero, and also in the y-
direction, since we assume no �ow in that direction. By letting a! b, dividing by b� a in
the usual way, and move the derivative inside the integral sign, we obtain the equation in
di¤erential form:

@h

@t
+
@

@x
(vh) = 0: (192)

Since this is an equation with two unknown functions, v and h, we can not solve the
equation immediately.

The momentum balance will here give us something only for the x-direction, px = �v,
and the conservation law takes the following form:

d

dt

Z b

a

(�v)Bhdx+ [(�v) v � (Bh)]ba =
X

Fx: (193)
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It remains to specify the forces. Gravity acts directly on the water and, along the x-axis,
this amounts to the force component proportional to sin�,

Fg =

Z b

a

�g sin�Bh (x; t) dx: (194)

We then have the pressure forces. The pressure at the surface and the bottom does not
contribute signi�cantly to the x-component. However, we have a contribution from the end
surfaces. Here we shall assume hydrostatic pressure, p = �g (h� z), and sets cos� t 1 so
that

dP = �g (h� z) (Bdz) : (195)

The total pressure force on the surface at x = a is thus

P (a; t) =

Z h

0

�g (h� z)Bdz = �gBh
2 (a; t)

2
; (196)

and similarly at x = b, where the pressure force acts in the negative x-direction,

P (b; t) = ��gBh
2 (b; t)

2
: (197)

The �nal force contribution is the friction force against the bottom. It turns out, partly
based on dimensional analysis, that one can assume the friction force per area unit (shear
stress in the x-direction) can be written

� = ��Cfv jvj : (198)

The constant Cf is called the Chézy-factor and is empirically determined and depending
of the roughness of the bottom. The total friction force is therefore found by integrating �
over the bottom surface:

Ff = �
Z b

a

�Cfv
2 (Bdx) : (199)

If we put all this together and divide by �B, we get

d

dt

Z b

a

vhdx+
h
(v) vh+

g

2
h2
ib
a
=

Z b

a

�
g sin�h� Cfv2

�
dx: (200)

It may be a bit tedious to establish the conservation law, but the principle is simple. The
di¤erential formulation follows in the same way as above:

@ (hv)

@t
+
@

@x

�
v2h+

g

2
h2
�
= g sin�h� Cfv2: (201)

The equations 192 and 201 are often called the shallow water equations, or Saint-Venant
Equations, and constitute what is called a hyperbolic system. There is a theory for hyper-
bolic systems of two equations that we shall not go into here, but in general the equations
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can not be solved analytically. However, it is easy to see that the equations have the
solution

h (x; t) = h0;

v (x; t) = v0; (202)

where
g sin�h0 � Cfv20 = 0: (203)

The last equation simply says that friction balances gravity. Linear stability analysis can
tell whether the solution is stable, and this analysis, which is analogous to the one made
for the instabilities in a tra¢ c jam, may be found in the book by Whitham [18], p. 85�86.

In certain situations the �ow is unstable, and more advanced analysis then leads to
so-called roll waves. Roll waves may be observed on smooth sloping surfaces during heavy
rain. Water �owing down a �at slope then has a tendency to create �waves�that are almost
vertical in front and move slowly downward in relation to water velocity itself (see Fig. ??).

If we neglect the left side in Eq. 201 , gravity always balances the friction. This is called
the kinematic theory of �ood waves. We obtain a relation between h and v,

v =

s
g sin�

Cf
h1=2; (204)

and Eq. 192 becomes
@h

@t
+

s
g sin�

Cf

@

@x
h3=2 = 0: (205)

The kinematic velocity is

c (h) =
d

dh

s
g sin�

Cf
h3=2 =

3

2

s
g sin�

Cf
h1=2 =

3

2
v (h) : (206)

We leave to the reader to show that if the water level in the upper part of a river
increases, in other words, if @h=@x < 0, it may develop a shock that in this case moves
down the river like a wall. The phenomenon can occur during torrential rain or in rivers
with regulated water �ow, such as in rivers downstream from power plants. Note that the
speed of the shock will be about 50% greater than the speed of the water �ow!

On the �gures 20 and 21, downloaded from the WEB-page of Dr. Hubert Chanson,
Univ. of Queensland, Australia (http://www.uq.edu.au/~e2hchans/), we see examples
of similar phenomena. These waves are called tidal bores, and occur as shock-solutions for
the equations 192 and 201 in a �at river when the tide enters the river from its mouth. Fig.
20 is the most famous example of a tidal bore.

Figure 21 shows a somewhat di¤erent case. The picture is from the river Dorgonge in
France. The river Seine had in the past a similar wave that could reach in some cases all
the way to Paris, but this does not appear to be that prominent anymore.

The last image (Fig. 22) is copied from A. C. Fowler�s photo gallery and shows roll
waves on a road.
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Figure 20: The tidal bore on Qiantang River near Hangzhou, China, also known as Hang
chow or Hangzou Bore. The wave can be up to 9 feet tall and enters 2 times daily. It is
most pronounced around the spring and autumn equinox ( c
 Dr. H. Chanson).

Figure 21: Surfers on the tidal bore entering the Dordogne ( c
 Dr. H. Chanson).
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Figure 22: Roll waves on an asphalt road in the rain (Image copied from
http://www.maths.ox.ac.uk/~fowler/pictures/gallery.html).

4.5.3 Research Project: The Circular Water Jump

Everyone who has run tapped water vertically into the kitchen sink, has observed that a
circular water jump often forms some distance from where the jet hits the surface. If this
does not sound familiar, one should before reading further make a simple experiment as in
Fig. 23 The geometry of the problem is indicated in Fig. 24.

We assume radial symmetry and a constant density �. Furthermore, we assume that the
water velocity is directed radially outward and is independent of z. Thus, both speed and
depth are only functions of r and t. As for the pressure, we assume that this is given by
the hydrostatic pressure, p(r; t; z) = �g(h(r; t)�z) since any constant atmospheric pressure
drops out. Frictional force per area unit at the bottom has the form tC = �Cf� jvjv
(where again Cf is the Chezy friction factor).

Let us set up the general conservation laws of mass and momentum for a control volume
limited by r1 and r2, r1 < r2, where r1 is greater than the radius of the center jet. From
the mass conservation law,

d

dt

Z
R

�dV +

Z
@R

� (v � n) d� = 0; (207)

we immediately get, using polar coordinates and dividing by 2��;

d

dt

r2Z
r=r1

h(r; t)rdr + r2h2v2 � r1h1v1 = 0: (208)
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Figure 23: When a vertical water stream hits a horizontal surface, a circular jump in the
�ow forms some distance away from where the stream hits.
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Figure 24: Vertical water jet hitting a horizontal plane.
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Figure 25: Sector-shaped control volume for the momentum balance.

For the momentum balance it is necessary to choose a pie-shaped section as control volume
and compute, e.g. the momentum balance in the x-direction, see Fig. 25.

Since the pressure on the bottom surface works vertically, it is su¢ cient to look at the
pressure forces on the side walls. The pressure forces acting on a strip of width ds of the
side wall is dP = �gh2(r; t)ds=2, and by integrating around all side walls we obtain

Px =

Z
Sides

� pnxd� = �g sin �0

0@h2(r1; t)r1 � h2(r2; t) + r2Z
r=r1

h2(r; t)dr

1A : (209)

For the bottom friction we have, as for the �ood waves,

Cx = �
r2Z

r=r1

�0Z
�=��0

Cf�v � (v cos �)rdrd� = �2Cf� sin �0
r2Z

r=r1

v2(r; t)rdr: (210)

The rest of the expressions is left to the reader, and we �nally end with

d

dt

r2Z
r1

vhrdr +
h
v2rh+

r

2
h2g
ir2
r1
=

r2Z
r1

�
� Cfv2r +

h2

2
g

�
dr: (211)

Di¤erential formulations of mass and momentum follow in the usual way:

@(rh)

@t
+
@(rhv)

@r
= 0;

@(rhv)

@t
+
@

@r
(rhv2 + rh2g=2) = �Cfv2r +

h2

2
g: (212)
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Figure 26: Formation of a circular water jump.

A suitable out�ow will produce a stationary annular jump some distance from where the
jet strikes, as indicated in Fig. 26. The water jump is actually a shock called a hydraulic
jump. By assuming steady �ow and letting r1 ! r2 = R in the conservation laws, all the
integrals of the conservation laws disappear, and we end up with the following classical
shock conditions derived by J.-B. Belanger in 1838 [17]):

v1h1 = v2h2: (213)

v21h1 +
1

2
h21g = v

2
2h2 +

1

2
h22g: (214)

This is not su¢ cient to determine the position of the shock. We refer to the �uid
mechanics text books for an discussion of the energy conservation in an ideal �uid under
stationary conditions, leading to Bernoulli�s equation, stating that the quantity

gz +
v2

2
+
p

�
(215)

is constant along streamlines. For a streamline on the surface (or at the bottom) this gives
a third condition at the jump:

gh1 +
v21
2
= gh2 +

v22
2
: (216)

In the theory of hyperbolic conservation laws, conditions such as the ones stated in the
equations 213, 214 and 216 are called Rankine-Hugoniot conditions.

The equations 213, 214 and 216 have the obvious and not particularly exciting solution
h1 = h2; v1 = v2 ; hL = 0. However, if one requires that h1 6= h2, the three equations
do not have a solution. In reality, some of the energy is transformed to turbulence and
eventually to heat at the shock. This requires the energy condition to include a certain
energy loss at the jump:

gh1 +
v21
2
= gh2 +

v22
2
+ ghL: (217)
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The extra quantity ghL on the right side is called head loss and is basically unknown.

If we only consider 213 and 214, it is possible to derive the equation�
h2
h1

�2
+
h2
h1
= 2

v21
gh1

: (218)

The dimensionless combination
Fr =

vp
gh
: (219)

occurring on the right hand side is called Froude�s Number, and is an important number
in hydrodynamics. The quadratic equation for h2=h1 has the solution

h2
h1
=
1

2

�
� 1�

p
1 + 8Fr1

�
(220)

For h1 to be less that h2, it is necessary that Fr1 > 1. The Froude number has an interesting
physical interpretation. Water waves (longer than a few centimeters) have the propagation
speed cp =

p
gh in shallow water. Thus, the Froude number is the ratio between v and cp.

A �ow with a free surface where v > cp is called supercritical �ow. If you are sitting in the
�ow, a disturbance in front of you cannot be warned by a surface wave before it happens
to you. Thus, Fr is analogous to the Mach number in aerodynamics.

From the energy condition, we can �nd an expression for the relative energy loss in the
shock expressed as the ratio hL=h1:

hL
h1
=
h1 � h2 + v21=2g � v22=2g

h1
;

= 1� h2
h1
+
Fr2

2
� v22
2gh1

= 1� h2
h1
+
Fr2

2

�
1�

�
1

h2=h1

�
2

�
: (221)

where we �nally may insert Eq. 220.

But what is the position of the water jump? A simpli�ed analysis is found in [17],
ignoring all other energy losses apart from at the shock. If the kinetic energy in the �ow
before the shock is much larger than potential energy, the velocity, according to Bernoulli�s
equation, will be approximately constant and equal to U0, i.e. the speed of the jet as it
hits the plate. We then obtain from the mass and momentum, balance

q0 = 2�Rh1U0 = 2�RHv2;

U20h1 + h
2
1g=2 = v

2
2H +H

2g=2; (222)

which after a simple transformation gives

R =
(U20 � gH=2)q0
�gH2U0

: (223)

It is not unreasonable that U0 enters in addition to q0, since both the added momentum
and mass should be of importance for the position of the jump.

In September 1993, Journal of Fluid Mechanics presented a comprehensive analysis of
the problem [3].
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5 DIFFUSION AND CONVECTION

Whereas a material variable is a quantity passively transported along with the �owing
medium, this is not always a reasonable assumption. On a small scale, the molecular
di¤usion mixes liquids and gases by the molecules tumbling around. This also applies if
we add small particles of a liquid (mixture by Brownian motion). There are di¤erences in
the concentration that give rise to the mixing. If the medium is moving, we will also have
a change because of transportation. Such transport is called convection.

Low viscosity �uids will often have speeds and length scales so that turbulence is devel-
oped. Turbulence is the chaotic movement where the �ow develops vortices and thin layers
that spin into each other and split up (smoke in the air visualizes this well). If we add
a foreign substance to a medium, we observe that the mixing goes much faster when the
�ow is turbulent than it does if the mixture occurs by di¤usion alone (this is why we use a
spoon in the cup in order to mix milk and co¤ee!). Modeling by turbulent mixing is a classic
problem. The simplest would then be trying to describe it as an enhanced di¤usion, but
there are also examples where such a description appears to be quite wrong. Turbulence
in �uids can occur when the speed varies greatly from place to place (called the velocity
shear in �uid mechanics). Otherwise, the turbulence may be caused by temperature and
density di¤erences (always observed when we boil water). In Chapter 6, we shall derive the
conservation laws for turbulence from the conservation laws in Sec. 4

In addition to molecular di¤usion and turbulence, di¤usion-like spread has been shown
to be very applicable in other contexts. Often, the o¤spring is a discrete phenomenon,
modeled by stochastic random walk. Mathematically, one can then show that such discrete
models in the limit with very many objects actually transform into di¤usion models.

5.1 Conservation Laws with Di¤usion

Di¤usion is �ux caused concentration di¤erences. If the concentration is constant, there
will be no net �ux in any direction. To �rst order, the �ux must be proportional to the
change in concentration per unit length, in other words

j = ��r'; (224)

where ' is the concentration and � is called the di¤usion coe¢ cient. This expression is
called Fick�s Law for di¤usion. Heat conduction obeys a similar law. If the speci�c heat is
constant, the heat �ux is q = �krT , where T is the temperature and k is called the heat
conduction coe¢ cient. This expression is called Fourier�s Heat Conduction Law.

Di¤usion has a smoothing e¤ect on the concentration gradients. If we start with a
localized section R of a liquid with a di¤erent concentration of some substance, the largest
concentration gradients occur along the edges of R. When we stir and develop turbulence,
the batch of liquid is stretched and twisted so that an increasing proportion is located
in areas with strong gradients. In this way, di¤usion acts more strongly, and this is the
mechanism behind what we call forced mixing or enhanced di¤usion by turbulence.
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Let us now consider a general situation where c(x; t) is the concentration of a substance
in a liquid, and the vector �eld j(x; t) denotes the corresponding �ux. If the substance
passively follows the �ow, we have shown before that the �ux is just jc(x; t) = cv. Even
when the liquid is at rest, the material may be spread by a di¤usion �ux jd. We want to
show that the total �ux will be the sum of the �uxes, j(x; t) = jd(x; t) + jc(x; t). Let R(t)
be a material region of the liquid much smaller than the scale of variations in v. For time
intervals of the order of the diameter of R divided by jvj, an observer traveling with R(t)
set up

d

dt

Z
R(t)

c (x;t) dV

�������
t=0

+

Z
@R(0)

jd (x;0) � nd� =
Z
R(0)

q (x; t) dV: (225)

But Reynolds transport theorem applied to the �rst term gives

d

dt

Z
R(t)

c (x;t) dV

�������
t=0

=
d

dt

Z
R(0)

c (x;t) dV+

Z
@R(0)

c (x; 0)v � nd�; (226)

and altogether,
d

dt

Z
R

cdV +

Z
@R

(jd+cv) � nd� =
Z
R

qdV: (227)

A general control region can be divided into arbitrary small parts where this formula holds.
When all contributions are added, the area integrals over common borders cancel so that
one ends up with the same formula for the whole region. This is thus the general di¤usion
conservation law, and the total �ux is

j(x; t) = jd(x; t) + jc(x; t): (228)

If we apply the Divergence theorem as in Chapter 4, we �nd the di¤erential form:

@c

@t
+r � (jd + vc) = q: (229)

Inserting for jd = ��rc, we get a Convection/di¤usion Equation:

@c

@t
+r � (vc)�r � (�rc) = q: (230)

In general, both v and � may depend on c so that the equation is nonlinear. In the next
section we will consider a simple mathematical model where this equation enters in a central
way.

5.2 One�Dimensional Chemical Reactor

A simple chemical reactor consists of a tube (often �lled with crushed glass or glass spheres)
where a �uid is �owing with a constant mean velocity v. A certain substance is added to
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Figure 27: Sketch of a simple one-dimensional chemical reactor. The �uid �ows through a
tube �lled with crushed glass or glass spheres.

the �uid from a nozzle. The is mixed with a constant di¤usion coe¢ cient �. In practice,
� is an e¤ective di¤usion coe¢ cient due to the turbulent mixing in the �ow around the
glass), as illustrated in Fig. 27. The concentration of the substance (outside the source
region) is described by a one-dimensional version of Eq. 230:

@c

@t�
+ v

@c

@x�
� � @

2c

@x�2
= 0: (231)

Scaling x� by the typical tube length L and a corresponding time scale T = L=v gives us

@c

@t
+
@c

@x
� " @

2c

@x2
= 0; (232)

where " = �=Lv is a dimensionless parameter, similar to the inverse Reynolds number.
When " is small, we have an equation with a small parameter in front of the highest
derivative. This is the case when convection is dominating over di¤usion. When " > 0, the
equation belongs to the parabolic class of PDEs, whereas it is hyperbolic when " = 0. In
this case, it is not just the order of the equation that changes, the type changes as well.

Let us consider the solution of the initial value problem:

@c

@t
+
@c

@x
� " @

2c

@x2
= 0; t > 0; �1 < x <1;

c(x; 0) = f(x) (233)

For " = 0 the equation is ct+ cx = 0, and we have already seen in Sec. 2.5 that the solution
is then simply

c(x; t) = f(x� t): (234)

The initial density pro�le moves unchanged to the right with speed 1 (speed v in the original
variables). This is also reasonable from a purely physical reasoning.

When " > 0, it is convenient to choose a coordinate system following the �ow:

x0 = x� t;
t0 = "t: (235)
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Then

@c

@t
=
@c

@t0
@t0

@t
+
@c

@x0
@x0

@t
= "ct0 � cx0 ;

@c

@x
=
@c

@t0
@t0

@x
+
@c

@x0
@x0

@x
= cx0 ; (236)

@2c

@x2
= cx0x0 :

Thus,
ct + cx � "cxx = "ct0 � cx0 + cx0 � "cx0x0 = 0; (237)

or
ct0 = cx0x0 ; (238)

which is the classical parabolic equation. We leave to the reader to show that the function

cf (x
0; t0) =

1p
4�t0

exp

�
�x

02

4t0

�
(239)

is a solution for t0 > 0. This is the so-called fundamental solution. From the formula
1Z

�1

e�x
2

dx =
p
�; (240)

we �nd that
1Z

�1

cf (x
0; t0)dx0 = 1 (241)

for all t0 > 0. The fundamental solution is, in other words, a Gaussian distribution with
variance increasing linearly with time. When t0 ! 0, the solution approach a �-function at
the origin. Physically, this corresponds to a release of a unit quantity of the substance at
the origin at time t0 = 0.

If we return to original coordinates, we obtain

cF (x; t) =
1p
4�"t

exp

�
�(x� t)

2

4"t

�
: (242)

The solution is sketched in Fig. 28. It is easy to show that the general solution of the
initial value problem c(x; 0) = f(x) can be expressed as a convolution integral with the
fundamental solution:

c(x; t) =

1Z
s=�1

f(s)cF (x� s; t)ds: (243)

A general feature of convolution says that the result is at least as nice as the nicest of the
functions involved, and actually, the solution c(x; t) will be in�nitely many times di¤eren-
tiable for t > 0 no matter how f looks. Fast variations are smoothed out more and more
as the time goes on, and

lim
t!1

c(x; t) = 0: (244)
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Figure 28: Time development of the fundamental solution shown for t = 0:1 up to 2, and
" = 1.

How fast smearing takes place depends on the size of ". In this linear equation, the so-
lution becomes smoother and smoother as time passes, but for more general non-linear
convection/di¤usion equations this does not need to be the case.

On its way towards the �nal stage, the solution of Eq. 243 passes what is called an
intermediate asymptotic state. The concept was introduced in [1] and says (in the simplest
case) that the solutions of di¤erential equations asymptotically may approach simpli�ed
solutions as time passes, and before they reach their �nal stage.

Consider the di¤usion equation

@c�

@t�
= �

@2c�

@2x�
; 0 < t�; �1 < x� <1; (245)

with initial condition c�(x�; 0) = f(x�), and where f is a function localized to the interval
[�L;L] such that Z L

�L
f(x�)dx� = Q0; (246)

f(x�) = 0 for L � jx�j: (247)

For large times, t = O(T ), the solution, due to di¤usion, has a spatial extension X =
O(
p
�T ); where X � L (However, mathematically the solution is non-vanishing on the

whole interval [�1;1] for all t > 0).
Let us scale the problem by T , X and Q0=X:

t� = Tt;

x� = Xx =
p
�Tx; (248)

c� =
Q0
X
c:
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This gives
@c

@t
=
@2c

@2x
; (249)

while the initial condition is now

f(x) = c(x; 0) =
X

Q0
c�(xX; 0) =

X

Q0
f �(Xx): (250)

We see that f(x) = 0 for jxj > " = L=X � 1, andZ 1

�1
f(x)dx =

1

Q0

Z 1

�1
f �(Xx)Xdx = 1: (251)

The scaled problem becomes

ct = cxx; c(x; 0) = f(x); (252)Z 1

�1
f(x)dx = 1; f(x) = 0 for jxj > ": (253)

At t = O(1), the initial condition looks like a �-function regardless of how irregular f is,
and the actual solution must therefore be quite similar to the fundamental solution (The
argument can be made mathematically precise by studying the convolution integral in Eq.
243). Fundamental solutions therefore have greater applicability than one might think:

For large times, the details of the initial conditions are blurred and we can use solutions
derived from the simpler conditions.

Linear di¤usion equations in one or several dimensions are thoroughly covered in all
textbooks on partial di¤erential equations.

5.3 A Nuclear Power Plant Accident

In this case study we show how one can use conservation principles and basic properties of
the fundamental solution of the one-dimensional convection/di¤usion equation to analyze
a hypothetical release of radioactive material. The analysis is typical of how one will try
to get a �rst rough overview of a relatively di¢ cult modeling problem. The situation is of
course �ctional, and was an exam task at NTNU in 1986, just after the Chernobyl disaster.

From a nuclear power plant there is an uncontrolled release of radioactive cooling water
to a river past the power plant. The radioactivity is mainly due to a certain short-lived
isotope (Numerical values below are selected in order to produce reasonably simple numeric
answers).

The special thing here is that the radioactive material breaks down. If we have a solution
with a concentration c of radioactive material, the concentration decays exponentially with
time,

c(t) = c(0) exp(�t=t0): (254)

This could also be described by the di¤erential equation

dc

dt
= � c

t0
(255)
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where the time t0 ln 2 is the half-life for the isotope.

We assume that the river stream �ows at a mean velocity U = 0:2m/s. In reality,
the water velocity varies with the river topography, and the waters are mixed and spread
both by turbulence and because the water velocity is not constant over the cross section of
the river. In practice, it is common to model this by a so-called eddy-di¤usivity (eddy =
whirl) along the direction of the river, de�ned by a di¤usion coe¢ cient �E 6.The di¤usion
coe¢ cient will have the same dimension as the molecular di¤usions coe¢ cient, but will be
much larger. Here, we let �E be equal to 1m2=s, which is not a completely unreasonable
value. We consider the river to be one-dimensional and assume that emissions come from
from a stationary point-source.

When formulating the conservation law, the density of radioactive material c enters as
amount per length unit of the river, while the �ux will have two contributions, one from
the di¤usion and one from convection:

J(x; t) = c(x; t)U � � @c
@x
(x; t): (256)

The decreasing radioactivity can be modeled as a sink with intensity c
t0
. The spill is a

�-function source in x = 0. The change of radioactive material within an interval [x1; x2]
of the river is thus described by the conservation law

d

dt

Z x2

x1

c(x; t) dx+ J(x2; t)� J(x1; t) =
Z x2

x1

�
�c(x; t)

t0
+ q(t)�(x)

�
dx: (257)

The di¤erential form of the the equation will be

@c

@t
+ U

@c

@x
� � @

2c

@x2
= � c

t0
+ q(t)�(x); (258)

which is a linear convection/di¤usion equation with a source/sink term. Assume that the
discharge has been going on with a constant amount q0 per unit of time from time t = 0.
The total amount of radioactive material in the river at any time can then be calculated
from the conservation law by integrating from x1 = �1 to x2 =1:

dC

dt
= �C

t0
+ q0;

C(t) =

Z 1

�1
c(x; t) dx: (259)

Note that the �ux terms disappear since limx!1 J(x; t) = limx!�1 J(x; t) = 0. The
solution for C(t) under the assumption that C(0) = 0 follows immediately:

C(t) = q0t0 (1� exp(�t=t0)) : (260)

As t!1; the total amount converges to q0t0.
Consider now a situation where a constant discharge q0 lasts for t1 = 30 minutes. We

are seeking an approximate solution for c (x; t) at two di¤erent times: (i) immediately after
the spill is over, and (ii ) after t2 = 106s t 11.5 days.
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After the 30 minutes are over, there is a total amount

C0 = t0q0
�
1� e�t1=t0

�
� t1q0 (261)

in the water (note that t1 << t0). Convection (i.e. the motion of water masses with mean
speed U) has led to a spreading of material over a length L = Ut1 = 360m. How much
di¤usion has a¤ected the solution is estimated by the length scale for di¤usion,

�1 =
p
2�t1 = 60m. (262)

This is signi�cantly less than L. Since there is no appreciable radioactive decay during
this short period, the concentration, c0, is nearly constant from x = 0 to x = L, and mass
balance gives c0L = q0t1. Thus,

c(x; t1) t
�
c0 = q0=U; 0 � x � L
0; otherwise:

(263)

Actually, the solution should be a little �rounded� on both ends, but we have a good
approximation when neglecting both radioactive decay and turbulent di¤usion.

After 106 s the dispersion and decay can no longer be neglected. The length scale for
the di¤usion is now

�2 =
p
2�t2 � 1400m, (264)

which is signi�cantly larger than the original length L of the discharge. The total amount
of radioactive material is given byZ 1

�1
c(x; t2) dx =

�
q0t1(1� e�t1=t0

�
e�(t2�t1)=t0 � q0t1 exp(�t2=t0) (265)

Relative to the amount just after the end of the discharge, the remaining amount is about
exp(�t2=t0) � 0:8 � 10�12 less.
Since t1 = 30minutes is much less than t2 = 106s, and L=�2 � 0:25, we can, with high

accuracy, assume that all emissions of radioactive material occurred at time zero. It is then
possible to exploit the fundamental solution to the convection/di¤usion equation stated
in Eq. 242 giving the solution of a unit discharge at t = 0 and x = 0. The full solution
becomes, approximately,

c(x; t2) � [q0t1 exp(�t2=t0)]
1p
4��t2

e�(x�Ut2)
2=(4�t2); (266)

where the �rst part denotes the total remaining radioactive material and Ut2 = 200km.

It is actually easy to write down the solution for an arbitrary time-variable discharge
q(t) from a point-source. Since we can assume that the emissions at di¤erent times do
not a¤ect each other, it is possible to consider emissions as a series of point-discharges,
and then sum up the corresponding solutions. In the same way as above, the solution of a
discharge over time duration d� at a time � < t

dc(x; t) = [q(�)d� exp(�(t� �)=t0)]F (x; t� �): (267)
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The distribution of radioactive material at time t is then given by the integral

c(x; t) =

Z t

�1
dc(x; t) =

Z t

�1
[q(�)d� exp(�(t� �)=t0)]F (x; t� �)d�: (268)

In practice, the radioactive emissions often include several di¤erent isotopes. Decom-
position of one isotope could also lead to other radioactive isotopes. This will lead to
connections between the conservation laws for the individual isotopes, but the link is lim-
ited to the source-terms. Moreover, the modeling of the river will naturally also be made
considerably more advanced. In particular, turbulent mixing is described by models that
relate the strength of the di¤usion of the amount of turbulent kinetic energy. The modeling
will �rst calculate the �ow and turbulence level in the water using a hydrodynamic tur-
bulence model. Then run a transport model calculating the distribution of the radioactive
material on the basis of the hydrodynamic solution.

Today, the authorities require that such models are developed and tested before an
accident occurs (the models can actually be tested by controlled release of radioactive
isotopes).

5.4 Similarity Solutions

So far we have always been able to scale the variables in our equations, but for some
�academic� problems there are no natural scales to use. The fundamental solution to
the linear di¤usion equation one such simple example. It is impossible to �nd reasonable
time and space scales for this problem by just looking at the equation and the de�nition
domain, �1 < x <1 and 0 < t. In this case it turned out not to be necessary. However,
if there are no scales to use, we must combine the variables in order to obtain dimensionless
equations.

We will not go into further detail on the theory of similarity solutions, where in particu-
lar, the Norwegian mathematician Sophus Lie has provided important contributions ([12],
[1], [16]). However, we will, based on dimensional analysis, illustrate the method by means
of an example from heat conduction. The idea of this section comes from [5].

Two in�nite materials with di¤erent but constant temperatures are brought into contact
at time t = 0, as shown in Fig. 29. We assume that heat is transported smoothly through
the contact surface, and we assume one-dimensional heat conduction. The problem is to
determine the temperature development in the material as time goes on. Since we assume
in�nite extent, and we consider the time from 0 to 1, there is no length or time scale. In
practice, the materials will have �nite extent, L, and after some time T , the temperature
at the ends begin to change. As long as we limit ourselves to times that are signi�cantly
smaller than T , we should be able to use the solution valid for an in�nite extent of the
material.

Heat transfer and storage of a material is (in its simplest form) determined by three
material constants: mass density, �, [�] = kgm�3, speci�c heat capacity, c, [c] = Jkg�1K�1,
and the heat conduction coe¢ cient, k, [k] = Js�1 m�1K�1.
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Figure 29: The temperature in the blocks for t = 0 and after a some time in contact.

We introduce a dimensionless temperature � by writing

T = T1 + (T2 � T1)�;

and quite general we expect

� = �(x; t; �1; c1; k1; �2; c2; k2): (269)

where the indices indicate material 1 and 2. If we know the heat conduction equation, we
know that �; c and k in the material combines into a heat di¤usion coe¢ cient � = k=c�,
while the heat �uxes are generally of the form �krT . The heat �ux should be continuous
across the border between the materials. This means that we must be able to simplify Eq.
269 to

� = �(x; t; �1; �2; k1; k2): (270)

The dimension matrix for these six variables has rank 3 (check!), and we have therefore
also three dimensionless combinations, for example,

� =
xp
�1t
;

a =
k1
k2
; (271)

b =
�1
�2
:

Thus, we have found that the solution of the problem must be written in the form

� (x; t) = �0 (�; a; b) = �0

�
xp
�1t
;
k1
k2
;
�1
�2

�
: (272)

As expected, the solution depends, on combination of x and t, and already here we make
a surprising observation:

�(0; t) = �0(0; a; b) (273)
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is constant and independent of time for t > 0! Unfortunately, dimensional analysis can not
give us the exact expression for �(0; t), but the expression for � has reduced the problem
from a partial to an ordinary di¤.-equation. The heat conduction equation in material 1
now takes the form

@�

@t
= �1

@2�

@x2
; (274)

and by using @�
@t
= d�0

d�
@�
@t
etc., we �nd

d2�0
d�2

+
1

2
�
d�0
d�

= 0; (275)

and similarly for material 2,
d2�0
d�2

+
1

2
b�
d�0
d�

= 0: (276)

Equation 276 has general solution

�0 = A2 +B2 erf

 p
b

2
�

!
; (277)

whereas we for material 1 get

�0 = A1 +B1 erf

�
1

2
�

�
: (278)

We have 4 constants from the integration, but since �0 (�) ! 0 when � ! �1, and
�0 (�)! 1 when � !1, only two remain:

�0 = A

�
1 + erf

�
1

2
�

��
; � < 0;

�0 = 1 +B

 
erf

 p
b

2
�

!
� 1
!
; � > 0: (279)

The solution found requires that t > 0, and then �0 is continuous at � = 0. This gives

A = 1�B: (280)

Finally, we use that the �ux must be continuous across the contact surface,

k1
@T

@x

����
0�
= k2

@T

@x

����
0+

: (281)

After introducing � and �, this gives

a
d�0
d�

����
0�
=
d�0
d�

����
0+

; (282)

or

aA
1

2
= B

p
b

2
; (283)
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� [kgm�3] c[J/kgK] k[W/mK] T [�C] w[m2Ks:5]
Foot 1000 4000 0.6 37 1550

Hot coal 150 800 0.04 600 70

Table 2: Approximate values of density, speci�c heat and heat conduction coe¢ cient for
the human foot and burning coal

and �nally,

A =

p
bp

b+ a
; B =

ap
b+ a

: (284)

We get a surprisingly simple expression for the temperature of the interface:

T (0; t) = T1 + (T2 � T1)A =
T1w1 + T2w2
w1 + w2

; wi =
p
�iciki: (285)

Now we could stop here, but the expression explains why, in winter, it feels much colder
to touch a piece of metal than a piece of wood. In summer, we may get burned by a piece of
metal in the sun, whereas touching a piece of wood with the same temperature is without
any risk. The explanation is as follows. Your �nger will have a temperature Tf and a
certain wf . Although wood and metal have the same temperature T0, wwood < wf , while
wf � wmetal. This means that T (0; t) � Tf when we touch the tree, while T (0; t) � T0
when we touch the metal.

This reasoning can actually be taken even further. Some literature search has revealed
the values in Table 2.

These values gives a contact temperature Tk between a human foot and glowing coal
given by

Tk =
37�C� 1550 + 600�C� 70

1550 + 70
� 62�C. (286)

By no means deterring! Such an explanation of why it is possible to walk on hot coals is of
course rejected by a compact majority on the Internet. Some years ago, Swedish physics
professor visited NTNU and let students try this astonishing experiment. He waited until
the top of the coal was burned out so that it screened somewhat for exposure to the heat
radiation from below. As far as I know, no one was hurt by walking over the bed.

One might wonder for how long time one could trust the similarity solution. If we assume
that the outer layer of the skin (epidermis) is about L = 0:5mm, it is possible to estimate
the time by setting � = 1, or

t =
L2

�
=
(10�3=2)

2 � 1000� 4000
0:6

s = 1.7s. (287)

It is not worth stopping!

The temperature for this particular example is shown for 0(1)5 seconds on Fig. 30. As
one can see, our estimate is realistic, but the temperature increase has reached far less than
2mm into the foot even after 5 seconds.
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Figure 30: The temperature pro�le across the contact for a situation with the foot to the
left and hot coals to the right shown for 0(1)5 seconds. Note that both the temperature
and �ux are continuous at x = 0 when t > 0.

5.5 Non-linear Di¤usion

While models leading to linear di¤usion equations are relatively simple to analyze, new and
unexpected things when the di¤usion coe¢ cient depends on the dependent variable and
the equation becomes nonlinear.

Gas �owing isothermally in a porous medium is a simple example that leads to a non-
linear di¤usion equation. A porous medium, such as sandstone, have small pores that gas
can �ow in. Porosity, �, is the volume fraction of pores so that 0 < � < 1. Darcy�s Law
says that the volume �ow (m3 / (m2 s) is given by

q = �K
�
rp (288)

where K is a constant of proportionality called the permeability. Furthermore, � is the
dynamic viscosity of the gas and p the pressure. We shall assume that the state equation
for the gas has the form p = a�
, where 
 > 0. The conservation law for the gas will then
be

d

dt

Z
R

��dV +

Z
@R

�q � nd� = 0; (289)

which gives us the di¤erential formulation

�
@�

@t
+r � (�q) = 0: (290)

If we insert the state equation in the expression for q, we obtain

q = �K
�
rp = �Ka


�
�
�1r�; (291)

and therefore
@�

@t
= r �

�
Ka


��
�
r�

�
: (292)
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Figure 31: Sketch of the solution for � (�) = �.

As we see, we have got a di¤usion equation with a di¤usion coe¢ cient which is proportional
to �
. In particular, we see that di¤usion coe¢ cient approaches 0 when the density tends
to 0 (when 
 is greater than 0). There is a lot of theory for non-linear di¤usion equations
although it is no longer possible to apply the superposition principle for solutions. Even
for such equations there are similarity solutions. For equations

@�

@t
=
@

@x

�
�(�)

@�

@x

�
(293)

one may look at solutions on the form �(x; t) = g(s); s = x=t1=2. If we insert this, we
obtain an ordinary di¤erential equation for g:

�(g)g00 + �0(g)g02 +
s

2
g0 = 0: (294)

For �(g) = 1 the equation is reduced to g00 + sg0=2 = 0 with the well-known solution

g(s) = A

Z s

�1
e��

2=4d� + B: (295)

If �(�) = �, we obtain a solution that is sketched in Fig 31. The solution is 0 at a �nite
value of s, and therefore, xmax = smax

p
t /

p
t. For this di¤usion equation the solution

spreads out at a �nal speed! See [4] for a more detailed analysis of di¤usion.

Another class of solutions are the so-called Barenblatt solutions for � = �0 (�=�0)
m:

�(x; t) = �0

�
t0
t

�1=(m+2) 
1�

�
x

x1

�2!1=m
; t > 0 ; jxj � x1 = x0

�
t

t0

�1=(m+2)
(296)

(t0 and x0 may be expressed by �0 and Q =
R1
x=�1 c(x; 0)dx ). Contrary to the standard

fundamental solution corresponding to the limit m! 0, the Barenblatt solutions form > 0
have �nite extension on the x-axis. Examples of Barenblatt solutions for a selection of m-
values are shown on Fig. 32.

Also for these equations there are theorems saying that solutions of random, but localized
initial conditions approach the Barenblatt solutions when the time increases. The solutions
are described in [8], but not in [1].
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Figure 32: Barenblatt solutions shown for four di¤erent values of m. The solutions are
scaled according to their maximum.
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mean values
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Figure 33: An observed signal consisting of rapid �uctuations and a more slowly varying
mean.

6 MODELLING OF TURBULENCE

The theory of turbulence is a very good example of how we can make use of stochastic
considerations in mathematical modeling. We abandon to describe the phenomenon in
a deterministic way below a certain level, saying that faster variations are stochastic or
random. When a complete description is out of reach, we try instead to model the evolution
of the mean values, as illustrated on Fig. 33.

We shall illustrate this technique by showing how one obtains equations for turbulence
in the very simplest case, namely for an incompressible, viscous �uid without any in�uence
of external forces.

To derive the equations we need the continuity equation and Navier-Stokes equation
that was derived in Sec. 4. We start by the following four di¤erential equations

r � v = 0; (297)
@

@t
v +r � ((v)v) = �1

�
rp+ �

�
r2v (298)

In turbulence theory a full solution of equations 297 and 298 is out of reach. The velocity
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and the pressure are however seen as random variables and written

v = E(v) + (v � E(v)) ;
p = E(p) + (p� E(p)) : (299)

Expectation values vary over space and time scales given by the dimensions of the phenom-
enon we see. These scales are called the macroscopic scales. �Small-scale variations�or the
so-called �uctuations take place at the microscopic scales. In turbulence theory assumes
that these scales are well separated, but in some situations that does not not need to be
the case.

Unfortunately, the practice of turbulence theory is the opposite of the one used in
statistics and probability theory: Deterministic variables are denoted by capital letters and
random variables with lower case letters. In order not to confuse readers with a background
in mechanics, we shall stick to this practice. Thus we use V for E(v), and v � E(v) by v:

v := V + v;

p := P + p: (300)

HereV and P are deterministic functions of the macroscopic variables x and t, while v and
p are stochastic variables with expectations 0, E (v) = 0; E (p) = 0. Often it is assumed
that v and p are Gaussian variables, and in general, the parameters in the probability
distributions of v and p will depend on x and t.

We now introduce Eq. 300 into Eq. 297 and apply the expectation operator, which we
assume commutes with the di¤erentiation:

0 = E (r � (V + v)) = r �V +r � Ev = r �V: (301)

Thus we see that V also satis�es the Eq. 297

r �V = 0 (302)

and even r � v = 0.
If Eq. 298 is treated in the same way, we obtain for component �j�

�

�
@Vj
@t

+r � (VjV) +r � E (vjv)
�
= � @P

@xj
+r � (�rVj) : (303)

It is usual here to insert the tensor T = ��E(vv0), that is, Tij = ��E(vivj). This tensor is
called the Reynolds stress tensor. The momentum equation for the macroscopic variables
is then

�(Vt +r � ((V)V) = �rP +r � (�rV +T): (304)

Eq. 304 di¤ers from Eq. 302 by an extra force term, r �T, whereas Eq. 302 is essentially
the same as Eq. 297.
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By subtracting Eq. 304 from 298 and inserting V+v etc., we obtain an equation for v.
If we then take the scalar product with v and apply the expectation operator, the result is
a transport equation for turbulent energy per unit volume,

e = �
1

2
E(v � v): (305)

The fundamental question now is how to express the Reynolds stresses by means of macro-
scopic variables. This is the main problem in turbulence theory. The oldest attempt was
made by Boussinesq as early as 1877. He de�ned T as a function of @Vi=@xj in the same
way as the stress tensor for a Newtonian �uid. Thus we can write equation

�(Vt +V � rV) = �rP +r � ((�+ �T )rV); (306)

and the conservation laws of mass and momentum have exactly the same form as before.
The constant �T , with the dimension of viscosity, represents an additional �viscosity�due to
turbulence, called eddy viscosity. It has been shown that this model matches free turbulent
�ow well, where �T can be 10 to 1000 times greater than �. Since it is easy to apply,
this has led to an extensive use as an adjustment factor in numerical computations. More
advanced models relate �T to the local turbulent energy.

If a liquid contains a substance that is mixed with the liquid by turbulent di¤usion,
we will, in addition to Eq. 297 and 298 have a convection/di¤usion equation for the
concentration c of the substance (the �substance�may well be heat content):

@c

@t
+ v � rc = r � (�rc); (307)

where � is the di¤usion coe¢ cient.

In the same way as for V and P it is possible to write the concentration Ec+(c�Ec) :=
C + c, and if this is inserted into the equation, we have

@(C + c)

@t
+ (V + v) � r(C + c) = r � (�r(C + c)): (308)

When we then apply the expectation operator and apply r � v = 0, we obtain

E(v � rc) = E(r � (vc))� E(cr � v) = r � E(vc); (309)

and
@C

@t
+V � rC = r � (�rC � E(vc)) : (310)

The vector qT = E(vc) is called the turbulent �ux. As for the Reynolds stresses, it is
di¢ cult to relate this �ux to macroscopic variables. The simplest way is of course again to
assume that qT = ��TrC, as this gives the same equation as before with a new di¤usion
constant �+ �T .
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7 PROBLEMS

7.1 Simple Problems

Note: No solutions are provided for the simple problems.

Problem 1

(a)

� How is density de�ned?

� How is �ux de�ned?

� What is a point source, and how can it be described?

� What is a distributed source, and how can it be expressed when the �ux is known?

(b) What is the �ux for a substance that passively follows a �uid velocity �eld v (x;t)?
Show that the dimension of the expression is consistent with the de�nition of �ux.

(c) How do we derive the di¤erential form the integral form of the general conservation
law?

Problem 2

A hemisphere with radius r has center at the origin, and is bounded by 0 � z. The �ux
�eld j is de�ned in the space as

j (x;t) = (y sin z) {̂x + xz
3{̂y + z{̂z; (311)

where f̂{x; {̂y; {̂zg are the unit vectors along the coordinate axes. Calculate the �ow of
material through the curved part of the surface of the hemisphere, i.e. jxj = r, z > 0.
Hint: The solution is simple.

Problem 3

A chemical dissolved in a liquid spreads by molecular di¤usion, modeled by means of
the �ux

j = ��r'; (312)

where ' is the concentration of the substance (kg/m3), � is a constant, and r the gradient.
What is the unit of �? The substance decays over time, and during the time from 0 to t,
the concentration (if nothing else happens) has decreased as

' (x;t) = '0e
�t=t0 : (313)

This represents a distributed sink, but how can this be described as a function q (x;t)?

Use the general conservation law to derive the di¤erential equation

@'

@t
= �r2'� '

t0
: (314)
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Problem 4

Find the solution surface, z = f (x; y), to the quasi-linear �rst order partial di¤erential
equation

@z

@x
+ y

@z

@y
� 2 = 0 (315)

so that the space curve de�ned by

x = t;

y = 1; (316)

z = t;

t 2 R is in the surface.
Hint: Follow the recipe in the Appendix of the note step-by-step.

Problem 5

How is the �ux of a substance de�ned if it di¤uses and is simultaneously transported by
a moving �uid? State the conservation law both in integral and di¤erential form.

Problem 6

(a) De�ne the fundamental solution cf (x; t) of the equation

@c

@t
= �

@2c

@x2
; x 2 R; t � 0: (317)

where c (x; t) is the concentration of a substance and � is a positive constant (what is �
called?).

The fundamental solution represents a unit discharge in the point x = 0 at time t = 0.

(b) Show that the total amount,
R1
�1 c (x; t) dx, remains equal to 1 for all t > 0. It is

reasonable to consider c (x; t) as a probability density on R. What is in this case the mean
value, �, and standard deviation, �?

(c) In statistics �3� � is often said to be the typical extension of a distribution. What
is the [�3�; 3�]-interval here?
(d) The equation

@c

@t
+ v

@c

@x
= �

@2c

@x2
; (318)

where v is a positive constant, represents a situation where what we are considering is
moving to the right with constant speed v. What is the fundamental solution in this case?

(e) Show that if the distribution at t = t0 is c (x; t0) = h (x), the general solution of Eq.
1 for t > t0 may be written

c (x; t) = h � cf (�; t� t0) (x; t) =
Z 1

�1
h (s) cf (x� s; t� t0) ds: (319)

(f) Use the expression in (e) (or a smarter way, based on the uniqueness of solutions)
to �nd the solution for t = 3 when the solution of t = 1 is

h (x) = cf (x; 1) : (320)
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Can you derive a general property of convolutions of the fundamental solutions based on
this?

(g) Which condition on the di¤usive �ux jd must hold at x0 if there is a dense wall
there, so that all di¤usion occurs to the right of the wall (x � x0).
(h) Show (or argue) that if x0 in (g) is larger than 0, it is possible to write the solution

for a unit emission at x = 0 for t = 0 as

c (x; t) = cf (x; t) + cf (x� 2x0; t) ; x � x0; t > 0: (321)

Problem 7

(a) Determine the fundamental solutions for

@c

@t
= �

�
@2c

@x2
+
@2c

@y2

�
; (x; y) 2 R2; t � 0; (322)

@c

@t
= �

�
@2c

@x2
+
@2c

@y2
+
@2c

@z2

�
; (x; y; z) 2 R3; t � 0; (323)

As long as we are interested in solutions de�ned on Rn, we may use the fundamental
solution to express more general solutions. The two-dimensional equation 322 may, e.g.
describe the extent of an oil spill on the surface of the sea .

(b) Determine how a unit emission at t = 0 from an o¤ shore oil platform situated at
x = 0 will evolve if it in addition is a constant current in the sea. A variable emission over
a period of time can be approximated as a number of small spills occurring at constant
time intervals. State an expression for the solution in this case. The extent of the oil slick
could be de�ned as the area where the oil �lm is thicker than a certain thickness, e.g. 5
molecular diameters. Challenge: Program and visualize this slick using Matlab or Octave.

7.2 Modeling Problems

Note: Solution outlines and comments are found in Sec. 7.3.

7.2.1 The Student 10km Race

Many years ago, the students�sport club at NTNU arranged the Student 10km Race at
the old Trondhjem Stadion. The arrangement was terribly crowded with more than 1000
participants, all starting (or trying to start) at the same time. This spectacular event, often
in rain and on a terribly dirty track is the origin of the following problem.

Consider an ordinary race-track with length L = 400m. We assume that the mean
running speed v� decreases linearly with the density ��, so that v� = v�max for �

� = 0
students/m, and is v� = 0 m/s when �� = ��max. We also consider the track to be one-
dimensional and 0-shaped.

(a) State the conservation law for students (assuming no late entries or drop-outs)
under these conditions, introduce dimensionless variables, and show that the di¤erential
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formulation for the students�density may be written as

�t + (1� 2�) �x = 0; (324)

where 0 � � � 1 and �(x; t) is a 2�-periodic function of x.
(b) Find (in implicit form) the exact solution of Eq. 324 when

�(x; 0) = �0 + " cos(x); (0 < �0; 0 < " < �0): (325)

Sketch the characteristics for the solution in the xt-plane and show that, as a solution of
the integral conservation law, it breaks down and forms a shock in the density after some
time.

(c) When will the shock start, and what happens to the shock when t!1?
(Hint : Start by determining the crossing points for characteristics starting at 3�=2� �

and 3�=2 + �, when � varies from 0 to �. Try to prove that the crossing points lie on a
straight line segment, and that there are no crossings elsewhere. Finally, check that the
line segment is a shock and that the corresponding solution indeed satis�es the integral
conservation law.

7.2.2 Two Phase Porous Media Flow

Oil is found in porous rocks. Often the porous rock is trapped between layers of solid
impermeable rock, called an oil reservoir, and when we pump oil out, ground water enters.
In so-called enhanced oil recovery, water is actively pumped into the reservoir and the oil
is forced out. The simultaneous �ow of oil and water is complex, and in order to study
this in detail, small samples of rock are taken from the reservoir and investigated in the
laboratory. The following model is essential in these investigations.

A long thin cylinder of porous sandstone with constant cross section A is situated along
the x-axis. The pores occupy a constant fraction � of the volume (0 < � < 1), and
are initially �lled with oil. We assume that the oil has constant density and measure the
amount of oil by its volume. The sides of the cylinder are closed, but by applying a pressure
at one end, it is possible to press oil or water through the stone.

In order to �nd an expression for the �ux of oil in the x-direction , j [m3/(m2s)], we
assume it only depends of the viscosity, � [kg/ms], the permeability (inverse �ow resistance)
of the stone, K [m2] , and the pressure gradient, @p=@x.

(a) Show that dimensional analysis gives

j = �kK
�

@p

@x
; (326)

where k is a dimensionless constant.

Assume that the pores of the cylinder in addition to oil also contains water. All pores
are either �lled with water or oil, so that a volume V of rock contains a volume So�V of
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oil and Sw�V of water, where So + Sw = 1. We assume that water and oil have the same
pressure and that the corresponding �uxes may be written as

ji = �ki (Si)
K

�i

@p

@x
; i = o; w: (327)

The parameter ki (Si) is called the relative permeability.

(b) Establish the conservation laws for oil and water for the part of the cylinder between
x = a and x = b. Show that if we apply a pressure gradient such that

q = jo + jw = constant, (328)

then we have, for S � Sw, the following hyperbolic equation for S:

�
@S

@t
+
@

@x
f (S) = 0;

f (S) =
qkv(S)=�v

ko (1� S) =�o + kv (S) =�v
: (329)

(c) Assume that �o = �w, ko (1� S) = 1 � S2 and kw(S) = S2. Solve the equation
(329) for t > 0 for a cylinder of length L when

S(x; 0) = 1� x=L; 0 � x � L;
S(0; t) = 1; 0 � t: (330)

7.2.3 Reduced Speed Limit

In this problem we are considering the standard model for the tra¢ c of cars along a one-way
road.

(a) Describe the basis of the standard model. State the hyperbolic equation the model
leads to (when no cars are assumed to enter or leave the road). When will the car density
develop shocks?

(b) Between x = 0 and x = 1 there is now a reduction in the speed limit such that the
maximal speed reduces to 1=2, while the maximum density remains the same. We assume
that a similar linear relation between the car velocity and the density also applies for this
part of the road.

Which condition on the �ux of cars has to hold at x = 0 and x = 1? Find the solution
� (x; t) for t > 0 and all x when

�(x; 0) =

�
1=2; x < 1;
0; x > 1:

(331)

Hint : The density � between 0 and 1 remains constant for all t � 0.
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7.2.4 Tra¢ c Lights at a Pedestrian Crossing

In this problem we study the tra¢ c along a one way street, and without cars entering or
exiting in the �rst part. All variables are scaled so that the car density � is between 0 and
1, and car velocity v is equal 1� �.
(a) Show how to �nd an expression for the shock velocity U of a jump in car density,

and derive that in this case, U = 1 � �1 � �2, where �1 and �2 are the densities on each
side of the shock.

For t < 0, there is a constant car density � = 1=2 on the street. Between t = 0 and
t = 1 the cars face a red light at a pedestrian crossing at x = 0. For t > 1, the light is
again green.

(b) Determine the solution � (x; t) for t � 0.
(Hint : Make a sketch of the situation in an x=t-diagram. Show that the solution for �

has to be found in �ve di¤erent domains, of which the values in four of them are obvious.
In order to determine the domains it is necessary to determine their exact borders).

At another place on the street, a second one way street of the same type as the �rst
merges with the �rst street.

(c) Which condition must hold at the junction? Assume that the �ux on the �rst street
towards the junction is constant, j1 = 1=8, and the corresponding car density is less than
1=2. Describe the development of car density on the streets when the density �2 on the
second street increases from 0 to 1. The drivers on the �rst street have the right of way,
but are �exible and let cars enter from the second street if this is possible. In particular,
look at what happens when the �ux on the second street reaches 1=8.

7.2.5 A Water Cleaning System

A part of a water cleaning system is modelled as a tube of length L along the x�-axis,
where polluted water �ows with constant velocity V . The tube also contains absorbers
that remove the pollution. The concentration of pollutant in the water is c�, measured as
amount per length unit of pipe. Similarly, the amount of absorbed pollutant per length
unit of pipe is denoted ��. The maximum value of �� is A. Some of the absorbed pollutant
will over time re-enter the water stream. The absorption and re-entering is modelled by
the equation

@��

@t�
= k1 (A� ��) c� � k2��: (332)

(a) State the integral conservation law for the pollutant and show that this leads to the
di¤erential form

@

@t�
(c� + ��) +

@

@x�
(V c�) = 0: (333)

Based on the integral law, establish that a discontinuity in the concentrations, moving with
velocity U�, has to ful�l

U� =
c�2 � c�1

(c�2 + �
�
2)� (c�1 + ��1)

V; (334)
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where (c�1; �
�
1) and (c

�
2; �

�
2) are the concentrations on each side of the discontinuity.

(b) Introduce suitable scales and show that the di¤erential equations may be written

@

@t
(c+ �) +

@c

@x
= 0; (335)

"
@�

@t
= (1� �) c� ��: (336)

Explain the meaning of " and � (Hint : Use the same scale for �� and c�).

Assume that the tube is in�nitely long in both directions and consider analytic solutions
of equations 335 and 336 in the form of �fronts�, travelling with velocity U , that is,

c (x; t) = C (x� Ut) ; (337)

� (x; t) = R (x� Ut) : (338)

With � = x� Ut, we limit ourselves to the special case where C (�) and R (�) satisfy

lim
�!�1

C (�) = 1; (339)

lim
�!1

C (�) = 0; (340)

lim
�!�1

R (�) =
1

1 + �
; (341)

lim
�!1

R (�) = 0: (342)

(c) Insert 337 and 338 into Eq. 335, integrate once, and use the behaviour at �1 and
1 to determine U and a simple relation between C and R. Use this information and Eq.
336 to determine C (�) and R (�). How is the behaviour of the solution when "! 0? (Hint :
The equation

dy

d�
= y

�
�1 + y

M

�
(343)

has a solution
y (�) =M

1

1 + exp �
(344)

for 0 < y < M).

(d) Assume " = 0 in Eq. 336 so that the system (335 and 336) simpli�es to

� =
c

c+ �
;
@Q (c)

@t
+
@c

@x
= 0; (345)

Q (c) = c+
c

c+ �
; �1 < x <1; t � 0: (346)

Consider the initial condition

c (x; 0) =

�
1; x < 0;
0; x > 0:

(347)

Show that the corresponding solution of Eq. 345 develops a shock. Determine the shock
velocity from the expression in point (a) and compare to the result in (c).
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7.2.6 River Contamination

Discharge of contaminants into a river will be transported with the �ow (convection) and
spread due to turbulence mixing and varying water velocity (di¤usion). Consider a one-
dimensional river with mean �ow U and the di¤usion coe¢ cient �.

(a) Derive the expression for the �ux of contaminants under these simple conditions,
and �nd a length scale of the extent of an instantaneous point discharge after this has been
carried a length L down the river by means of the current. At the point x = 0 there is
a continuous discharge of a substance A so that the concentration in the river becomes
a (x; t). The substance A is converted into substance B with constant rate �. Thus, for a
water sample from the river we would have

da

dt
= ��a: (348)

The substance B decays with rate �, and for the same water sample, the concentration
b (x; t) of B ful�ls

db

dt
= +�a� �b:

(b) State the conservation laws for A and B on the integral and di¤erential form.

(c) The discharge at x = 0 takes place at a constant rate q0 (amount per time unit).
Neglect di¤usion and decide how far down the river the concentration of the substance A
is at its highest when we assume that � = �.

Hint : The di¤erential equation dy
dt
+ ky = e�kt has the general solution y(t) = C1e�kt +

te�kt.

7.2.7 Lake Sedimentation

A river �ows into a lake. The river brings sand and clay so that the lake is �lled up over
time. We shall formulate and analyze a simple one-dimensional model for how the lake is
�lled, and assume that it reaches from x = 0 to +1 and has a constant depth h at t = 0.
Conditions across (in the y-direction) are assumed to be constant.

The amount of sand and clay which settle on the bottom per time and area unit is
q (x; t). We write the depth z = b (x; t), x � 0, t � 0, and assume b (x; t) � 0. If the
bottom tilts (is not horizontal), the particles on the bottom will continue to move, and it
has been found that the mass �ux is proportional to the slope, that is, the volume �ux may
be written

j = �k @b
@x
: (349)

(a)Write the conservation equation in integral form for a part of the bottom , x0 � x �
x1, and show that the di¤erential form is identical to the heat di¤usion equation,

@b

@t
= k

@2b

@x2
+ q: (350)
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(b) Assume that all sand and clay enter at x = 0 (i.e. q = 0 for x > 0), and that the
amount entering is always su¢ cient for Eq. 350 to hold for t > 0. Argue that the solution
to Eq. 350 will be a similarity solution in this case, and �nd b (x; t) for x � 0 and t > 0.
(Hint:The equation

d2y

d�2
+
�

2

dy

d�
= 0 (351)

has the general solution A+B erf (�=2), where erf (x) = 2p
�

R x
0
exp (�s2) ds ).

(c) A more realistic scenario is that the shore, s (t), moves forward into the lake over
time. Assume that a constant volume of sand and clay enter the basin per time unit, q0,
and that all sand and clay enter at the shore.

The solution will then have a stationary shape and may be written by means of a function
b0 so that

b (x; t) =

�
0 x � s (t) = Ut+ x0

b0 (x� Ut� x0) x > Ut+ x0
(352)

Determine the velocity U and the solution in this case.

7.2.8 The Insect Swarm

Flying insects sometimes form dense swarms where the insects are attracted to each other.
On the other hand, the swarm has a certain extension, which implies that there is also
something preventing the insects from coming too close to each other. This modeling
study tries to explain this as a balance between the attraction towards the swarm and a
random motion modelled as a di¤usion.

The model is for simplicity one-dimensional, where the insects are assumed to stay in
a straight tube (For more information, see: P. Grindrod: Patterns and Waves, Claredon
Press, Oxford, 1991, pp. 188�189).

An insect swarm with density �(x�; t�) is situated in a long tube parallel to the x�-
axis. In the swarm random �ight (di¤usion) contributes to spreading the insects, while the
insects in the swarm are also attracted towards the center of the swarm. This latter e¤ect
can be modeled as a mean drift velocity w;

w(x�; t�) = �K
�Z x�

�1
�(s�; t�) ds� �

Z 1

x�
�(s�; t�) ds�

�
: (353)

We shall assume that the total amount of insects,

M =

Z 1

�1
�(x�; t�) dx�; (354)

remains constant.

(a) Explain why the model for w is not unreasonable, and state the conservation law
for insects in integral form.
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(b) Introduce the cumulative distribution of insects,

v�(x�; t�) =

Z x�

�1
�(s�; t�) ds�; (355)

and show from the conservation law that v� satis�es the equation

@v�

@t�
= �

@2v�

@x�2
�K(M � 2v�)@v

�

@x�
(356)

where � is the di¤usion coe¢ cient. We assume that � and K are constant.

(c) For a swarm with a diameter L there are two characteristic time scales,

TK =
L

KM
and TD =

L2

�
(357)

What do these scales signify? Scale the equation for v� when x� = O(L), t� = O(TK) and
TD � TK , and show that it can be stated as

@v

@t
= "

@2v

@x2
� (1� 2v)@v

@x
: (358)

What is the interpretation of "?

(d) Determine ��(x�; t�) when

��(x�; 0) =

(
M
2L
; jx�j < L

0; otherwise
; (359)

when we ignore the e¤ect of di¤usion. How do you expect, in rough terms, that the exact
solution looks when di¤usion is included?

(e) To examine the solution in (d) after a long time, it is reasonable to consider a length
scale L0 = �=(KM) and a time scale T � TK and TD. Show that with this scaling the
equation for v is independent of t to leading order. Verify that the leading order equation
has a solution

��(x�; t�) = A
1

cosh2(Bx�)
(360)

and determine A and B for a solution with the initial distribution as in (d).

Hint : Use that d
dx
tanh(x) = cosh�2(x), and try a v with the correct behaviour when

x! �1 and x!1.

7.3 Solution Outline for the Modeling Problems

7.3.1 The Student 10km Race

(a) The derivation is the standard one with the �ux given by

j�(��) = ��vmax (1� ��=�max) : (361)
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