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1 DIMENSIONAL ANALYSIS

1.1 The Basis of Dimensional Analysis

Dimensional Analysis is a technique based on two simple axioms about nature:

� All relations between physical quantities must be dimensionally correct

� No physical relation should depend on any particular set of units

Even if these axioms sound trivial and obvious, they lead to a powerful, simple and quite useful
tool in mathematical modelling. At the same time, it illustrates how important it is to uncover
the mathematical essence in two general and apparently vague statements. Let us now investigate
the axioms in somewhat more detail. A physical quantity has

� dimension

� unit

� numerical value

Dimension means, e.g. Length, Time, Mass, or combinations. The dimension of a physical
quantity is given once and for all and will never change. When we work with physical quantities
we need units, and as we know, there is a huge amount of units. For a length we have cm, m,
km, foot, inch etc. When the unit changes, the numerical value of the quantity also changes, as
illustrated in Fig. 1.

40m        =

Different units

Different values

Same
dimension!400dm       = 4000cm40m        =

Different units

Different values

Same
dimension!400dm       = 4000cm

Figure 1: The numerical value changes when the unit changes, but the physical dimension remains the
same.

Let R be a physical quantity. The reader should have observed by now that we have not really
de�ned what a physical quantity is. Wikipedia de�nes a physical quantity as a physical property
that can be quanti�ed in terms of numbers. Thus, the mass of Earth is a physical quantity whereas
a dice showing a 6 for a rock concert is not. It is convenient to have a notation for the unit of R,
and we shall write this as [R]. The value of R when we use a certain unit is denoted v(R). This
is not a standard notation, but convenient for the moment. Hence, R has a unit and a numerical
value,

R = v (R) [R] :
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Quantity Dimension symbol SI unit
Mass M kilo (kg)
Length L meter (m)
Time T second (s)

Electric current I ampere (A)
Absolute temperature � Kelvin (K)
amount of substance N Mole (mol)
luminous intensity J Candela (Cd)

Table 1: Fundamental physical units in the SI-system. Exact de�nitions may be found in Wikipedia.

That a physical relation or equation is dimensionally correct means we do not add apples and
pears, or that each side of an equality do not have di¤erent units. It is obvious that the well-known
formula S = 1

2gt
2 is dimensionally correct since

[S] = m;

[g] = m/s2; (1)

[t] = s:

On the contrary, you often �nd, even in textbooks, equations of the form

S = 4:9� t2: (2)

In order to be meaningful t must be measured in seconds and s in metres, and it will not work
for other pairs of units. Such relations should not be used. If you can not state your equations
in a dimensionally correct form, you have probably not a clear idea of what is going on. In
physics there is a set of dimensions forming so-to-speak the atoms. None of these depend on the
others and the dimensions along with corresponding units in the International System of Units
(abbreviated the SI-system) are listed in Table 1. All physical quantities have units which are
power combinations of the basic SI-system units (this may be considered as the de�nition of a
physical quantity).

1.2 Buckingham�s Pi-theorem

Buckingham�s Pi-theorem extracts the mathematical content of the two axioms in the introduc-
tion. The somewhat strange name comes from the dimensionless variables that we end up with
when we apply the theorem. These are often referred to as �1, �2, � � � (� is also used instead of
�).

Let us look at what a relationship between physical quantities means. A relationship is a
relation or a formula, that is, an equation that we can write

�(R1; R2; � � � ; RM ) = 0; (3)

where � is a certain function. We could also write this relation in other ways, e.g.

R1 = 	(R2; � � � ; RM ): (4)
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If we choose a set of fundamental units, and uses these in a consistent way for all the involved
variables, we should now have

�(v(R1); v(R2); � � � ; v(RM )) = 0:

In practice we could, for example, specify v(R2); � � � ; v(RM ), and then calculate v(R1) from
the relationship. However, it may well happen that there is no valid relationship between
v(R1); � � � ; v(RM ). If we consider S and t where [S] = m and [t] = s, there is no valid phys-
ical relation that contains only these two variables. We need at least one more quantity, as in the
well-known relations S = gt2=2 or S = V t. By simply looking at the quantities and their units,
it is possible to decide whether they at all can be combined into a sensible relation.

To investigate this further, it is smart to create a so-called dimension matrix containing the
exponents of the fundamental units in the units for the quantities we have. If [S] = m, [t] = s
and [g] = ms2, the dimension matrix will be

S t g

m 1 0 1

s 0 1 �2
: (5)

Let us already here point out that we use the familiar units in the �rst column. Actually, it would
be more correct to use universal dimension assignments such as L for length, T for time, M for
mass, etc. This is used in many textbooks. The dimension matrix surveys what the dimensions
of involved variables are.

Let now, in general, F1; F2; � � � ; FN denote the fundamental units in Table 1. The units of
any physical quantity may be expressed by means of these, for example, the unit for energy is
�kgm2/s2�. Generally, we may thus write

[R1] = F
a11
1 F a212 � � �F aN1N ;

... (6)

[RM ] = F
a1M
1 F a2M2 � � �F aNMN :

This gives the dimension matrix A:

R1 R2 � � � RM
F1 a11 � � � a1M

F2
... A

...
...

. . .
FN aN1 � � � aNM

: (7)

We say that R1; � � � ; Rr have independent dimension if it is impossible to make a (non-trivial)
dimensionless combination of R1; � � � ; Rr of the form

R�11 R
�2
2 � � � � �R�rr : (8)

In order to see what this means, we determine the unit of this expression:h
R�11 R

�2
2 � � � � �R�rr

i
= F a11�1+a12�2+���a1r�r1 �

� F a21�1+a22�2+���a2r�r2 � � � � (9)

� � � � F aN1�1+aN2�2+���aNr�rN :
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That R1; � � � ; Rr have independent dimensions means that the equation system

a11�1 + a12�2 + � � � a1r�1 = 0;
a21�1 + a22�2 + � � � a2r�r = 0;

...
aN1�1 + aN2�2 + � � � aNr�r = 0;

(10)

only has the trivial solution
�1 = �2 = � � � = �r = 0: (11)

We may recall from the theory of linear equations that this will happen if and only if the matrix
columns, 264 a11

...
aN1

375 ;
264 a12

...
aN2

375 ; � � � ;
264 a1r

...
aNr

375 ; (12)

are linearly independent. Thus, we have proved that R1; � � � ; Rr have independent dimensions if
and only if the corresponding dimensional matrix has linearly independent columns. Since the
vectors have unit N , we must have r � N for this to be possible. Going back to the example
above, we see that S and t have independent dimensions. The same applies for fS; gg and ft; gg.
On the contrary, S; t and g do not have independent dimensions.

If we now have a general dimension matrix, the maximum number of variables with independent
dimension is equal to the maximum number of columns that are linearly independent. This is
known in linear algebra as the rank of the matrix. Let us assume that we have organized ourselves
so that R1; � � � ; Rr have independent dimension, and that r is the rank of A, rank(A). We may
assume that r < M (If r = M , all quantities have independent dimension and there will be no
non-trivial physical relationship between them). From this assumption, we may use R1; � � � ; Rr
to form combinations involving Rr+1; � � � ; RM such that

�1 = Rr+1=(R
�
1 � � � � �R�r);

�2 = Rr+2=(R
�
1 � � � � �R�r);
...

�M�r = RM=(R
�
1 � � � � �R�r);

(13)

is dimensionless. Here ���means suitable exponents so as to make the �-s dimensionless. If we
then have a relation

�(R1; R2; � � � ; RM ) = 0; (14)

it is possible to replace Rr+1; � � � ; RM and arrange the expression such that we end with a new,
but equivalent relation,

	(R1; R2; � � � ; Rr; �1; � � � ; �M�r) = 0: (15)

We now claim: If R1; � � � ; Rr have independent dimensions, it is possible to choose a set of fun-
damental units such that the values v(R1); v(R2); � � � ; v(Rr) become arbitrarily speci�ed positive
numbers!

This is easy to see if we have just one quantity, e.g. R1 = 40m. If we measure R1 in centimeters,
v(R1) = 4000, while measured in kilometers,v(R1) = 0:04, and so on.

If the claim is correct, we have obtained the following interesting situation. Whatever units
we decide to use,
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	(v(R1);v(R2); � � � ;v(Rr); v(�1); � � � ;v(�M�r)) = 0: (16)

While the �rst r variables may take any positive value depending on how we choose the units, the
latest M � r variables remain constant during this change. As a function of M variables 	 will
therefore always be completely una¤ected by the values of the r �rst arguments. In other words,
	 can really only depend on �1; � � � ; �M�r! We have thus reduced our relation with M variables,
�(R1; R2; � � � ; RM ) = 0 to a new relation 	(�1; � � � ; �M�r) = 0 with only M � r variables. Apart
from the claim above, which is proved below, we have now proven

Buckingham�s Pi-teorem:

If there exists a (physically proper) relation

�(R1; R2; � � � ; RM ) = 0 (17)

between the quantities R1; R2; � � � ; RM , there also exists an equivalent relation

	(�1; � � � ; �M�r) = 0; (18)

where r is the rank of the dimension matrix.

Note that the theorem assumes that there is a relationship between R1; R2; � � � ; and RM . This
has to be ensured, or at least assumed, before we apply the theorem. In fact, Buckingham�s Pi-
teorem may also prove that no such relation exists. Buckingham Pi-theorem reduces the number
of parameters, and if none of the dimensionless �-s are completely redundant, M � r is also the
least possible number of variables we have in our problem.

In the proof above we applied R1; R2; � � � ; Rr to create the dimensionless combinations. These
variables are often called core variables. Usually there are several possibilities for the core vari-
ables, and what is appropriate depends on the problem.

It is easy to set up a formal procedure to determine the �-s (see Sec. 1.3.2 below). This is also
found in the textbooks, e.g. [4], but most of the time it is just as easy to �nd the combinations by
a simple inspection. Note that the number of dimensionless variables will be the same regardless
the choice of core variables and combinations. In principle, all are equally valid.

In the remainder of this section, we shall, for those particularly interested, show the above
claim.

We assume therefore that R1; � � � ; Rr has independent dimension, and that dimension matrix

264 a11 � � � a1r
...

...
aN1 � � � aNr

375 (19)

has rank r. A well-known proposition from linear algebra say that the rank of a matrix A is the
same as the rank of the transposed matrix AT . It turns out that this sentence is exactly what we
need to complete the proof.

Let us assume that, using the fundamental units F1; F2; � � � ; FN , Ri has the values vF (Ri); i =
1; � � � ; r. For another set of fundamental units, G1; G2; � � � ; GN , the numerical values will be
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vG(Ri); i = 1; � � � ; r. Let xi = Fi=Gi. Then,

Ri = vF (Ri)F
a1i
1 F a2i2 � � �F aNiN

= vF (Ri)x
a1i
1 Ga1i1 xa2i2 Ga2i2 � � �xaNiN GaNiN

= vF (Ri)x
a1i
1 xa2i2 � � �xaNiN Ga1i1 Ga2i2 � � �GaNiN

= vG(Ri)G
a1i
1 Ga2i2 � � �GaNiN :

(20)

Thus,
vF (Ri)x

a1i
1 xa2i2 � � �xaNiN = vG(Ri); i = 1; � � � ; r: (21)

If we take the logarithm of both sides, we end up with a linear system of equations of the form

a11 log(x1) + � � �+ aN1 log(xN ) = log (vG(R1))� log (vF (R1)) ;
a12 log(x1) + � � �+ aN2 log(xN ) = log (vG(R2))� log (vF (R2)) ;

� � � (22)

a1r log(x1) + � � �+ aNr log(xN ) = log (vG(Rr))� log (vF (Rr)) :

We recognize the coe¢ cient matrix in this equation system as the transposed of the dimension
matrix. Since we have r equations and, according to the proposition from linear algebra, r linearly
independent columns in the coe¢ cient matrix, this system will have solutions log(x1); � � � ; log(xN )
(not necessarily unique) regardless of the choice of the right-hand side. But this means precisely
that we may �rst specify vG(R1); � � � ; vG(Rr) to whatever we want, then �nd log(x1); � � � ; log(xN ),
then x1; � � � ; xN , and �nally select custom G-units , Gi = Fi=xi ; i = 1; � � � ; r.

1.3 Some Applications of Dimensional Analysis

1.3.1 The First Atomic Bomb Explosion

The following example of the use of dimensional analysis has become a classic. The English
physicist G. I. Taylor watched an amateur �lm of the �rst American atomic bomb explosion in
the Nevada desert, and measured the radius (r) of the �reball as a function of time (t), see Fig. 2.
He argued that r, apart from t, should depend on the energy (E) that is released in the explosion
and the density (�) of the air, since the �ame-front needs to accelerate the mass of the surrounding
air. Thus, he assumed that we have a relation �(r; t; �; e) = 0, and set up the following dimension
matrix

r t � e

kg 0 0 1 1
m 1 0 �3 2
s 0 1 0 �2

(23)

Note that we can �nd the unit of energy, expressed in terms of the fundamental units, by
consulting well-known formulas from physics. For example, we know that energy is force�distance,
and that force is mass�acceleration. This gives us

[e] = Nm = (kgm/s2)m = kgm2/s2:

The dimension matrix above has rank 3, and, according to Buckingham there is 4 � 3 = 1
dimensionless parameter. Since the equation is simply 	(�1) = 0, we assume it has a unique
solution such that we may write

�1 = C; (24)
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Figure 2: This series of images from the �rst atomic bomb explosjon shows a �reball growing with time.
To the right is shown a copy of the �gure G.I. Taylor published based on the whole sequence of images
(See the book of Barenblatt, s. 47 �50).
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where C is an unknown constant. We may �nd �1 by trial and error. First,�
e

�

�
=

Nm
kg/m3

=
kgm2

s2
m3

kg
=
m5

s2
; (25)

and then we observe that the following combination is dimensionless

�1 =
e

�

t2

r5
: (26)

This gives us the following simple formula:

e = C�
r5

t2
: (27)

We are not able to determine the constant C, but from an amateur �lm G.I. Taylor was able
to �nd the ratio r5=t2, and by assuming C = 1 (best guess!), he got that the released energy
e � 1014J. It turned out that this was within a factor of 2 of the correct. The publication of the
energy, which of course was �top secret�, caused great confusion among the Americans when this
was published as a letter in The Times.

1.3.2 A General Recipe for Finding Dimensionless Combinations

If it is di¢ cult to see the dimensionless combinations directly, it is possible to put up a system
of equations for the exponents. The method may be illustrated using the example above. Here
we are looking for a dimensionless combination of the form � = ex�yrztu and must therefore
determine fx; y; z; ug. Since we already know the units of the variables,

[�] = [ex�yrztu]

=
�
kgxm2xs�2x

� �
kgym�3y

�
(mz) (su)

= kgx+ym2x�3y+zs�2x+u:

Here � should be dimensionless, and therefore,

x+ y = 0;

2x� 3y + z = 0;
�2x+ u = 0:

There is no unique solution, but we choose x = 1, it follows easily that y = �1, z = �5, and
u = 2, in other words, exactly what we already knew. There is no reason to use this cumbersome
method if it is possible to see the result directly.

1.3.3 Pythagoras�Theorem

Since a right-angled triangle is completely determined by the length of the hypotenuse (c) and
the smallest angle (�min), there must be a relationship between surface area (A) of the triangle,
the length of the hypotenuse and the angle,

�(c; A; �min) = 0: (28)
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A

A1

2c

a

b
A

A1

2c

a

b

Figure 3: The area of the big triangle is the sum of the equally shaped smaller triangles

It is easy to set up the dimension matrix:

A c �min
m 2 1 0

:

(An angle is measured in radians, which is a ratio between two lengths and thus dimensionless).
Since the rank of the matrix is 1, there are two dimensionless parameters, A=c2 and �min, and we
end up with a relation A = c2f(�min). From Fig. 3 it is obvious that A = A1 +A2 for the areas,
and therefore c2f(�min) = a2f(�min) + b2f(�min), or c2 = a2 + b2, which is yet another proof of
this famous result (apparently not yet listed among the 93 other proofs found at [6]).

1.3.4 Fluid Flows in Tubes

This example, giving an expression for the friction factor to use for �uids �owing in tubes, is quite
famous and very useful in engineering. It requires some background in �uid mechanics.

We shall �nd an expression for the pressure drop in a cylindrical tube which contains a �owing
�uid, and we assume that the variables in Table 2 are important.

Concerning viscosity, �, this is a proportionality constant between shear stress (force/area
unit), for example �yx, and changes in the speed per. unit length, @u=@y, normal to the force
direction (consult a textbook in �uid mechanics or Internet for more information). For a so-called
Newtonian �uid (like water and air), �yx = �@u=@y. Thus, the unit for � is:

[�] =
[�yx]

[@u=@y]
=
(kgm/s2)=m2

(m/s)/m
=
kg
ms
: (29)

The measure of the wall roughness (e) could, e.g. be the typical standard deviation around the
mean (think of a cement tube with rough walls). Clearly, the size of e may vary over several
orders of magnitude from very smooth glass tubes, to steel pipes, cement tubes or hydropower
tunnels in rocks! From Table 2 we may derive the dimension matrix in Table 3.

We see that the rank is 3 (the maximum it can be), and consequently, we have 7 � 3 = 4
dimensionless quantities. In this example it is not very smart to use P as a core variable because
we want to express P in terms of the other variables. One possible choice for core variables is
fV;D; �g since ������

0 0 1
1 1 �3
�1 0 0

������ 6= 0; (30)
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Quantity Name Unit
Pressure P N/m2=kg/s2m

Mean �uid velocity V m/s
Tube diameter D m
Tube length L m
wall roughness e m
Viscosity � kg/ms

Density of the �uid � kg/m3

Table 2: Quantities that may be included in the expression for the pressure drop in the pipe.

P V D L e � �

kg 1 0 0 0 0 1 1
m �1 1 1 1 1 �1 �3
s �2 �1 0 0 0 �1 0

Table 3: Dimension matrix for the variables in the expression for the pressure loss.

and the columns are thus linearly independent.

The next step is to form dimensionless combinations where the remaining variables are in-
cluded. It is easy to check that the following combinations are possible choices:

�1 = P=(v
2�);

�2 = L=D;

�3 = e=D; (31)

�4 = vD�=�:

(There are other possibilities, but since we are not the �rst ones to carry out this exercise, we
show only the most useful one). Since we want P to be expressed by the other variables, it is
reasonable to think of a relationshipof the form

�1 = �(�2; �3; �4): (32)

Now it is also reasonable to assume (and this is veri�ed by experiments) that the pressure drop
is proportional to the tube L. Hence, it should be possible to write

�1 = �2�2(�3; �4); (33)

or

P =
L�V 2

D
�2(

e

D
;
V D�

�
): (34)

In �uid mechanics it is common to replace �2 with 2fF , where fF is called Fanning�s friction
factor,

fF = fF (
e

D
;
V D�

�
): (35)

The combination e=D is denoted by " and is known as the tube�s relative roughness. The second
expression,

Re =
�Dv

�
; (36)
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Figure 4: Moody-diagram copied from the Wikipedia Common image data base.

is the famous Reynolds Number. Just by applying dimensional analysis we have established that

P = 2
L�V 2

D
fF (";Re): (37)

(In the literature one will also encounter the friction factor fD = 4fF called Darcy�s friction
factor). The friction factor fF must be determined from more advanced theory and experiments,
and in 1944 L.W. Moody presented his the famous diagram which is now called a Moody diagram,
see Fig. 4. The diagram together with interactive code for calculating fF are also found in
numerous versions on Internet.

For those specially interested, one can mention that for very low Reynolds numbers (Re < 2000)
the �ow will be laminar. This is the so-called Hagen-Poiseuille �ow with a parabolic velocity
pro�le over a smooth tube with circular cross section. For such �ow one can show analytically
that P = 32L�V=D2, i.e. fF = 16=Re. For the rest of the chart, there are more or less empirical
expressions available. When Re > 6000 we have

fF = max(fC ; fN ); (38)

where fC is the solution of Colebrook�s equation

1

f
1=2
C

= �1:74 log
 
"

3:7
+

1:25

Re� f1=2C

!
; (39)

and fN is given from Nikuradse�s relation for fully developed turbulent �ow,

fN =
4

(1:14� 0:87 log ")2 : (40)
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Figure 5: A regular wave on the surface of water.

In the transition between laminar and turbulent �ow, the �ow is unstable and can switch in an
unpredictable way between being laminar or turbulent.

1.3.5 Water Waves

In one space dimension, we can write a regular wave on water surface

�(x; t) = a cos(kx� !t); (41)

where a is the wave amplitude, x the space coordinate, t is time, k = 2�=� is the wavenumber, �
is the wavelength, ! = 2�=T is the angular frequency and T the wave period, see Fig. 5.

For water waves, k and ! can not be chosen arbitrarily, but must satisfy a dispersion relation

!2 = f(k; h; a; � � � ): (42)

It is reasonable that the angular frequency ! occurs with a second power. Positive and negative
frequencies corresponding to waves that move to the right and left, respectively (for positive k).
Waves on water may be generated by the wind, boats etc. and are maintained by gravity. For
very short waves, � = O(1cm), the surface tension keeps the wave going. The surface tension
(or stress), � is characterized by a surface tension coe¢ cient T (not to be confused with the
period) that connects the surface curvature and the tension. In one dimension, the expression is
� = T@2�=@x2. The unit for T is thus

[T ] =
[�]

[@2�=@x2]
=

�
kgm
s2

1

m2

�
m2

m
=
kg
s2
: (43)

Since gravity is important, the gravitational acceleration g and the water density � are also
possible parameters in the dispersion relation. We neglect the e¤ect of air motion over the waves.
Thus, we end up with the following assumption about the dispersion relation:

!2 = f(k; a; h; g; �; T ): (44)

The corresponding dimension matrix is displayed in Table 4. We easily see that the matrix has
rank 3, and consequently, there are 7� 3 = 4 dimensionless combinations. Of several possibilities
we choose fk; g; �g as our core variables. It is not particularly smart to use !2, since we do
not want !2 to enter on the right side of the equation. Furthermore, either � or T need to be
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!2 k a h g � T

m 0 �1 1 1 1 �3 0
s �2 0 0 0 �2 0 �2
kg 0 0 0 0 0 1 1

Table 4: Dimension matrix for the dispersion relation.

involved since these are the only variables that contain kg in their units. It is now easy to �nd
four dimensionless combinations,

�1 =
!2

kg
;

�2 = ak;

�3 = hk; (45)

�4 =
Tk2

�g
;

and we �nd

!2 = gk�(ak; hk;
Tk2

�g
): (46)

In this formula there are several special cases:

� The wave has very small amplitude compared to the wavelength, ak � 1

� The water depth is large relative to wavelength, hk � 1

� The wavelength is much larger than 1cm, Tk2�g � 1 (follows from the numerical value of T )

If all three conditions are present, we could write !2 � gk�(0;1; 0). A more re�ned analysis
(by solving the di¤erential equations for water waves) shows that the relation in this case is
!2 � gk and that �(0;1; 0) = 1. If the depth is not so large, we obtain !2 = gk�(0; hk; 0), and
a closer analysis here shows that

!2 = gk tanh(hk): (47)

If the depth is large, and we have very short waves, only surface tension and not gravity is of
importance. A simpli�ed dimensional matrix could then be

!2 k T

m 0 �1 0
s �2 0 �2
kg 0 0 1

; (48)

but since only T depends on �kg�, it is impossible to combine T with the two others and form
a dimensionless combination. Thus, we need another parameter to match �kg� , and the only
possibility is �. We leave to the reader to show that this gives us

!2 = C
Tk3

�
: (49)
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Figure 6: Sketch of the paper airplane in the text.

It turns out that also in this case, C = 1. In general, it is possible to show by analytical methods
that for ak � 1, we will have

!2 = gk tanh(kh)

�
1 +

Tk2

�g

�
: (50)

1.3.6 Design of Paper Airplanes

What is the optimal shape of a paper airplane? Even if we restrict ourselves to one kind of models,
this is not a simple question and we expect to do a lot of experimentation. Before we start, it may
be smart to carry out some dimensional analysis. We shall focus on models that have performed
well in Scienti�c American�s paper airplane competitions. The airplanes are made by taking a
sheet of paper of length L0 and width B and fold it with small folds from one side until the center
of gravity lies approximately 1=4 from the folded edge, as shown in Fig. 6.

After the folding, the plane has length L. Instead of folding, it is also possible, using a little
sti¤er paper, to position the center of gravity correctly by using one or more clips in front of
the sheet. Ideally, such a wing should slide with constant velocity U in a �xed angle � with the
horizontal plane. Assume that one task is to investigate how the speed depends on the length,
width, and weight of the airplane. The paper�s weight per unit is denoted �p (kg/m2), the air
density �a (kg/m3), and air viscosity � (m2/s).

Let us �rst consider the friction force F between the airplane and the air. This force must in
any case depend on the size and speed of the plane, i.e., L, B and U . Furthermore, we expect
that the viscosity of the air is of importance. If we look at L, B, U and �, we �nd that none of the
units of these variables include kg, and since this occurs in force, we need a few more parameters.
It is reasonable to choose �a, while there is no reason why �p should enter the expression for the
force. There are other parameters that can be expected to have little impact on the friction force,
such as how smooth the paper is, how thick is the fold, etc., but we should have listed the most
important ones.
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The dimension matrix is constructed similarly to above

F B L U � �a
kg 1 0 0 0 0 1
m 1 1 1 1 2 0
s �2 0 0 �1 �1 �3

: (51)

We leave to the reader to show that this gives us three dimensionless variables which can be
arranged so that

F = L2U2�a	

�
L

B
;
LU

�

�
: (52)

Alternatively, one may write

F = LBU2�a ~	

�
L

B
;
LU

�

�
; (53)

and when B � L, it would be reasonable to replace ~	
�
L
B ;

LU
�

�
with a function of only one

unknown, i.e.

�

�
LU

�

�
= ~	

�
0;
LU

�

�
: (54)

If the aircraft moves with a constant speed in a �xed angle with the horizontal, the friction force
has to balance gravity. Then

F =Mg sin� = �p (L0B) sin�: (55)

(In addition, there must be su¢ cient lift for the airplane to stay in the air). For a wide plane,
the speed may then be expressed as

U2 =
�p
�a

L0
L
g sin��

�
LU

�

�
: (56)

The combination LU=� is again the Reynolds number, and as we see, simple dimensional analysis
has given us much insight which we can take with us further in the investigation.

1.4 Summary

In this chapter we have seen, based on two fairly obvious axioms about the nature, that it is
possible to derive the quite powerful Buckingham pi-theorem. These axioms are basically laws of
nature, of our universe. The theorem is easy to use, but requires that there really is a relationship
between the quantities we have listed. In practice, this can be problematic to determine.

If we were asked to �nd the eigenfrequency ! of a mathematical pendulum, we would assume
that this depends on the length of the pendulum�s rod (L), the gravitational acceleration (g), the
pendulum�s position angle from the vertical at the start (�), and the mass of the bob (m). Based
on these quantities, there should exist a relationship

�(!0; L; g; �;m) = 0: (57)

Here we observe, however, that this is impossible, since the mass is the only quantity containing
kg in its unit. Either we must remove m, or there must be an additional quantity that we have
forgotten. Since is seems impossible to �nd other reasonable parameters to include, we are forced
to remove m. This leads to the following useful observation:
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� Each fundamental unit must occur in at least two of the quantities.

The standard procedure now gives us

!0 = (g=L)
1=2 f(�): (58)

The results of the dimensional analysis are not unambiguous. Instead of writing

	(�1; �2; � � � ; �M�r) = 0; (59)

we could just as well write

�1 = f(�2; � � � ; �M�r);

f(�1; �2) = g(�3; � � � ; �M�r); (60)
...

Here, we use what is appropriate. There is no reason to say that one way of writing the formula
is more correct than another. In addition, the dimensionless combinations are not unique. If �1
is dimensionless, then so is also

p
�1; 1=�1; �

2
1. With more experience, one will often recognize

common combinations such as Reynolds number, etc.

The core variables was the subset that we used to form the dimensionless combinations. Usu-
ally, there are also several possibilities here. If we are interested in �nding how a variable (such
as R1) depends on the others, it is reasonable to avoid using R1 as one of the core variables. In
that way, we �nd a relation of the form R1 = �(R2; R3; � � � ; RM ), that is, R1 does not enter into
the arguments in �.

We have treated dimensional analysis as a method to simplify the relationships between phys-
ical quantities. Dimensional analysis is used to obtain an overview and can indicate whether we
really understand what we are doing.

One of the best properties of dimension analysis is that it gives us a formulation containing
the minimum number of free variables. This is in particular valuable for experimental work in
the lab or at the computer.

If we decide to �nd the frequency of a mathematical pendulum by means of experiments only,
and assume that !0 = �(L; g; �;m), we may have to determine the function � by selecting 10
di¤erent values for each variable, that is, perform a total of 104 experiments. If we �rst use
dimensional analysis, we realize that it is enough to use only one pendulum, vary the angle � for
a reasonable set of values,and then plot � against !0 (L=g)

1=2 in order to determine the function
f (�) in the expression from the dimensional analysis,

!0 =

r
g

L
f (�) :

A similar simpli�cation is also important to do in order to save the number of numerical experi-
ments on a computer, and before setting up experimental plans in statistical experiments.

Dimensional analysis is also crucial when working with scale models, that is, doing experi-
ments with models scaled down (or up) in size. Ideally, one would like that the dimensionless
combinations are the same for the model as for the original (this is called the scale laws).

All comprehensive textbooks on mechanics describes dimensional analysis. For example, both
[4] and [3] has nice introductions, while [2] is considered a classic. Moreover, the Internet has
several million references to Dimensional Analysis.
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2 SCALING

2.1 Introducing Scaled Variables

After establishing a mathematical model in the form of an equation, it will be necessary to
introduce dimensionless variables. Usually it is not di¢ cult to do this, but it can be carried out
in several ways, and it is not always easy to see what is most appropriate way. However, there
exists an intelligent way of doing this called scaling the equations. When the equations are scaled,
it is easy to see which parts are important and which are less important. It can be di¢ cult to
scale equations, and in any case this will depend on the problem we are considering, even if the
equation is basically the same all the time. Somewhat simpli�ed we can say that the scales force
us to think about the situation, and in this way we gain insight into what we are doing. The
theory in this chapter is mainly taken from [3].

� To scale a variable u� means to write the variable as

u� = Uu; (61)

where [U ] = [u�]; U is of the same order of magnitude as u�, and u is of order 1.

Here U is the characteristic size of u�: If we use U as our unit of measurement, u is neither
particularly large nor particularly small. This is a somewhat imprecise de�nition, but it re�ects
the fact that scales are not always very well de�ned.

Until getting used to scaling variables, it is handy to have a notation in order to distinguish
between the original variables with units, and the new dimensionless variables. We will do this, as
suggested in [3], by attaching * on the original variables, and remove * after the variable has been
made dimensionless. After a while, we become tired of writing *, and understand the transition
from the context.

Let us consider a variable u� which is a function of time t�. It is usually reasonable to use

U = max
t�
ju�(t�)j

as a scale for u�, even if the minimum of u� is much smaller. Then, at least juj � 1. In practice,
this often means to estimate the maximum value, since we may not know u� in detail.

It will also be necessary to �nd scales for time. Sometimes the maximum value of t�may
be used, but more often the scale is de�ned as a period over which u� varies signi�cantly. If
u� (t�) = sin at�, a reasonable time scale would be 1=a, since u� then varies from 0 to 1. As
suggested in [3], it is often possible to �nd a reasonable time scale by looking at (or estimate)

max ju�(t�)j
max jdu�=dt�j : (62)

Such expressions must be used with common sense, and when working with scales, we are not
very careful about extra factors such as 2; �, etc. Scaling is not an exact science, �often a rough
estimate is all we need.

� To scale an equation means to introduce dimensionless variables based on the scales of the
variables in the equation.

19
Mathematical Modeling and Simulation, MASTMO Autumn 2011



Depending on the situation we are in, the same equation could be scaled in several ways.
After the equation is scaled, it will be clear what are important and less important parts of the
equation (if not all are equally important). Often one will be able to get approximate solutions
by solving the equation when the less important parts are removed. Knowing the scales of the
variables of a mathematical model requires knowledge and physical understanding, and is one of
the most important things we do in mathematical modeling. As will be seen below, scaling is not
nearly as easy as it sounds. A good example is one of the main modeling examples in [3], where
the authors, several years after the book was published, discovered that the time scale they had
suggested was not really appropriate (Quite recently, the authors of these notes have suggested a
completely di¤erent scaling of the same equations).

2.2 Order of Magnitude

We say that the function f (x) is of the order of magnitude g (x) when x ! a if there exist two
�nite numbers fm;Mg, 0 < m < 1 < M , such that

m � f (x)

g (x)
�M (63)

for x! a. This is written
f (x) = O (g (x)) ; x! a; (64)

and expressed in words as �f (x) is of order g (x) when x is close to a�. Some like to require that
m =

p
1=10 and M =

p
10 (what is then log10m and log10M?), but we prefer a more informal

use, e.g.
log (1 + x)� x = O

�
x2
�
for small x-s. (65)

For series, the �rst non-zero term is called the leading order term, i.e. 4x3 + 3x4 + 5x5 + � � � is
of leading order x3 for small x-s.

A slightly di¤erent symbol, �o ()�is more precise: We write

f (x) = o (g (x)) when x! a; (66)

if

lim
x!a

f (x)

g (x)
= 0: (67)

Thus,

sinx� x+ x3=6 = O
�
x5
�
; (68)

sinx� x+ x3=6 = o
�
x4
�
; (69)

when x ! 0.

2.3 A Simple Case Study

In the following arti�cial and simple example we shall see how scales change depending on the
nature of the problem. The example is trivial and easy to solve analytically. The assumption
about the friction force is not very realistic.
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Figure 7: Ball falling or �red into a viscous �uid.

A spherical ball is �red vertically into a viscous �uid as illustrated in Fig. 7. The ball�s initial
speed is V and the forces acting on the ball is

Gravity: gm

Friction: �k dx�dt�
Buoyancy: �gm�v

�k

(70)

(Here, �v is the �uid density and �k the density of the ball). The equation of motion follows from
Newton�s Law and we assume that the ball starts at x� = 0 with velocity V :

m
d2x�

dt�2
= gm � k

dx�

dt�
� mg

�v
�k
; (71)

x�(0) = 0;
dx�

dt�
(0) = V: (72)

We shall also assume that �v < �k, such that the ball does not eventually �oat up to the surface,
and we replace g(1� �v

�k
) with a modi�ed g so that the problem simpli�es to

m
d2x�

dt�2
= gm � k

dx�

dt�
;

x�(0) = 0;
dx�

dt�
(0) = V: (73)

In this case we can imagine a number of special cases. If the ball had fallen freely with zero initial
velocity, it would, at x = L, have reached the speed vFF where vFF =

p
2Lg (Vertical motion

under constant acceleration). If, on the other hand, the medium is very viscous (think of syrup!),
the ball will after a while fall with constant speed v0 determined by

0 = gm � kv0; (74)

i.e. v0 =
gm
k .

Below we shall consider three di¤erent situations, and it will turn out that the ratio between
vFF and v0 is crucial.
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2.3.1 Case A: The friction is large �what happens initially is not very important

This is a situation where either L or the viscosity (here expressed by the constant k) is so great
that the ball falls at a constant speed over most of the distance. Assuming that the ball has speed
v0 all the way, we may estimate the time it takes to go from x� = 0 to x� = L to about

T0 =
L

v0
=
Lk

mg
; (75)

and this gives us a reasonable time scale. Depending on the size of V , the actual time the ball uses
could be slightly larger or smaller than T0. There is however an implicit assumption here that
V is not very large compared to v0. The length scale is not a problem, we use L and introduce
dimensionless variables x and t as

x� = Lx;

t� =
Lk

mg
t: (76)

By bringing this into the equations, we obtain

m
d2 (Lx)

d
�
Lk
mg t
�2 + k d (Lx)

d
�
Lk
mg t
� = gm;

Lx (0) = 0;
d (Lx)

d
�
Lk
mg t
� (0) = V; (77)

and after simpli�cation,

gm2

Lk2
d2x

dt2
+
dx

dt
= 1;

x(0) = 0;
dx

dt
(0) =

V

v0
: (78)

In addition to the variables x and t, the problem contains two dimensionless parameters:

" =
gm2

Lk2
;

� = V=v0: (79)

We note that

" =
gm2

Lk2
= 2

1

2Lg

�gm
k

�2
= 2

v20
v2FF

= 2

�
v0
vFF

�2
: (80)

Thus, " is a small parameter (compared to 1) if v0 � vFF . It is characteristic for this case that
the speed v0 is much less than the speed the ball would have had at x� = L if it fell freely. It
is typical that when we have scaled the equations, the dimensionless parameters have interesting
interpretations that we may apply for hindsight.

After the scaling is complete, the equation has the form

"
d2x

dt2
+
dx

dt
= 1; x(0) = 0;

dx

dt
(0) = �;

" = 2
v20
v2FF

; � =
V

v0
:
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As mentioned above, there is here an assumption that � is not particularly large. In that case,
one might imagine another time scale (see Case C below).

2.3.2 Case B: Small friction. The ball falls approximately freely. V is small com-
pared to vFF :

This problem could have been the same as in Case A, but now with the di¤erence that L is so
small that the ball never reaches speeds near v0. Thus, friction is of little importance.

Again, L is a natural length scale for the x�. If the ball fell freely and V = 0, the ball would
fall with nearly constant acceleration, and the time it takes to fall to x� = L would roughly bep
2L=g. Since we have already introduced vFF , we apply T0 = L=vFF as our scale. Certainly,

T0 is only about the half of
p
2L=g, but we do not care about this for a scale estimate. We have

already assumed that the speed V is so small that it does not a¤ect the time scale. With these
deliberations, we may write

x� = Lx;

t� =
L

vFF
t; (81)

and obtain

mL
2Lg

L2
d2x

dt2
+ kL

vFF
L

dx

dt
= mg; x(0) = 0;

dx

dt
(0) =

V

vFF
; (82)

and �nally

2
d2x

d�t2
+ "

dx

dt
(0) = 1; x(0) = 0;

dx

dt
(0) = �; (83)

" =
vFF
v0
; � =

V

vFF
: (84)

Note that the de�nition of " has changed compared to Case A, and here, " is a small parameter if
vFF � v0. This is a characteristic feature of Case B. The scaling above is only reasonable if V is
small compared to vFF . If V is greater than vFF , but still smaller than v0, the ratio L=V could
be a reasonable time scale. We leave to the reader to complete the scaling in this case.

2.3.3 Case C: The ball is released into a highly viscous medium. The initial velocity
V is much larger than v0

In this case, we expect that friction dominates over gravity, and we estimate the length and time
scales by looking at the approximate equation

m
d2x�

dt�2
= � kV; x�(0) = 0;

dx�

dt�
(0) = V: (85)

If this had been the exact equation, the ball would stop for t� = T0 = m
k (since

dx�

dt� = V � V k
m t

�).
An associated length scale (where we again disregard a factor of 2) will then be

L = V T0 =
V m

k
: (86)
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Case Characteristics Length scale Time scale Equation Parameters

A v0 � vFF L L=v0 "�x + _x = 1 " = 2
v20
vFF

; � = V
v0

B v0 � vFF ; V < vFF L L=vFF 2�x + " _x = 1 " = vFF
v0
; � = v=vFF

C V � v0 mv=k m=k �x + _x = " " = v0
v ; � = 1

Table 5: A summary of the scaling example

We introduce x� = mV
k x and t

� = m
k t:

m
mV

k

k2

m2

d2x

dt2
+ k

mV

k

k

m

dx

dt
= mg; x(0) = 0;

dx

dt
(0) = 1; (87)

which, after some simpli�cation becomes

d2x

dt2
+
dx

dt
= "; x(0) = 0;

dx

dt
(0) = 1; (88)

" =
v0
V
: (89)

In this situation, " is a small parameter when V � v0, and this is the characteristic feature for
Case C.

2.3.4 Summary

We have now seen three di¤erent situations where weight has been put on various parts of the
equation. The problem has, in addition to V , two characteristic speeds, namely vFF =

p
2gL and

v0 =
gm
k , and the various situations above are characterized by the mutual size of these speeds.

We summarize the results in Table 5.

In all three situations we end up with a parameter " which is typically small. The related terms
in the equation are also small, and by neglecting the terms of order ", we obtain the simpli�ed
equations.

Although it is the rule rather than the exception that we end with terms of di¤erent size in a
scaled equation, it is also possible that all terms happen to be of the same magnitude.

We leave to the reader to show that the exact solution is

x�(t�) =
gm

k
t� +

�
V � gm

k

� m
k

�
1� e�t�=(m=k)

�
; (90)

and the graph in Fig. 8 shows how the exact solutions relate to the situations we have seen. Note
that the cases we have considered by no means cover the entire chart. By setting " = 0 for all
three situations above, we obtain simpli�ed equations, but Case A is special. With " = 0, the
equation and initial conditions become

_x0 = 1; (91)

x0(0) = 0; (92)

_x0(0) = �; (93)

and unless � happens to be 1, it is impossible to solve the simpli�ed problem exactly. The general
solution to Eq. (91) is

x0 (t) = C + t; (94)
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Figure 8: The �gure shows the exact paths and an indication of the three situations we have considered.

and since the speed is 1 (v0 in the original variables), the form is reasonable. The approximate
solution is simply not valid near 0, and in order to determine the correct C = C(�) a special
technique (singular perturbation) is required.

In Case B, the approximate equation is

2�x0 = 1;

x0(0) = 0; (95)

_x0(0) = �;

which we immediately solve as
x0(t) = t

2=4 + �t: (96)

We can check the approximate solution by inserting it in the exact equation,

2�x0 + " _x0 � 1 = "
�
t

2
+ �

�
: (97)

The error on the RHS increases with time, and this is reasonable since the approximate solution
is not at all limited by friction.

The equation for Case C has approximate solution

x0(t) = 1� e�t; (98)

so here x0 (t) < 1 for all t.

Although the solutions in B and C obviously have their weakness, they are great for the
situations they are supposed to cover. Convince yourself by drawing the approximate and exact
solutions for some choice of " and �.
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2.4 Scaling Considerations

Arguments based on scale considerations have proven to be quite useful in many contexts, but
they require some physical insight and creativity, and are not always so easy to perform.

2.4.1 Turbulence

Fluids are mixed (on the microscopic level) by molecular di¤usion, and (on the macroscopic level)
by convection. Molecular di¤usion is related to the kinematic viscosity of the �uid (�; [�] =m2/s),
while convection is the macroscopic motion, typical by visible whirls, observed when we move the
spoon around in a cup of tea, or when watching the whirling water in a river, for example.

Suppose we consider a whirl with diameter L. The time scale associated with L and convection
with a velocity scale U will be

tK = L=U: (99)

The time scale associated with di¤usion over a length Lmay likewise be expressed by the kinematic
viscosity, � and L. The only possibility is

tD =
L2

�
: (100)

We observe that the quotient between these two scales is

tD
tK

=
L2U

� L
=
LU

�
= Re; (101)

which is a new meaning of the well-known Reynolds number, also mentioned above. A Reynolds
number Re � 1 indicates that the mixing is dominated by molecular di¤usion, whereas Re� 1
means that it is dominated by convection.

The value of � for water is about 10�6m2s�1. Consider a typical river with width L = 100m,
and U = 1m / s. Then

Re � 100 � 1
10�6

= 108; (102)

and the mixing of the water in the river is entirely dominated by convection.

In turbulent �ow large vortices initiate motion of small vortices which, in turn, set into motion
(and keep alive) even smaller vortices, and so on. In the very small vortices viscosity will reduce the
motion and the kinetic energy is eventually transferred into heat. The kinetic energy dissipation
(loss of energy) is mainly from these small vortices with a length scale l0 and velocity scales u0. We
can estimate the energy loss (E) per. time and unit mass by assuming that E = E(l0; u0; �), and
that E / u02 (in other words, proportional to the kinetic energy that is present in the smallest
vortices). Simple dimensional analysis then gives

E / �

�
u0

l0

�2
; (103)

and an estimate for E will be E = �
�
u0

l0

�2
. From the above we can further assume that the

smallest vortices have Re � 1, or tK � tD, that is

l0u0

�
= 1: (104)
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Thus,

l0 =

�
�3

E

�1=4
; (105)

u0 = (�E)1=4:

These scales are called the Kolmogorov�s micro scales in turbulence theory. These are the smallest
scales that occur before the di¤usion takes over and turns the kinetic energy over to heat by
internal friction.

If we mix 1kg of water with a mixer with an output of 100W, this power would disappear in
the smallest vortices, and consequently the diameter of these vortices is of the order

l0 =

 �
10�6m2

s

�3
=

�
100

kgm2

s2 � s � 1kg

�!1=4
= 10�5m = 0:01mm: (106)

2.4.2 Geometric Similarity of Animals

Why do we look like we do? It has long been known that animal forms are not just random, but
a result of the strength of muscles and bones in relation to the strength of gravity here on Earth.
If we could reduce a human to Thumbelina-size, it turns out that the body would immediately
be worn to pieces by the muscles. Therefore, insects usually have very small muscles (thin legs!)
in relation to there size.

The discussion below is taken from the note Dimensional Analysis of Professor Kristian B.
Dysthe, University of Tromsø, 1992. One of his references is the world famous book On Growth
and Form by D�Arcy W. Thompson, �rst published in 1917.

We shall �rst look at animals approximately geometrically similar, and having a typical length
scale L. We may then argue that their

1. weight is proportional to their volume, that is, / L3

2. muscle power is proportional to the amount of muscle �bers, which in turn is proportional
to the muscle cross-sectional area, / L2

3. ability to do work (and produce heat), power / lung capacity / oxygen uptake / surface
of the lungs / L2 (may be somewhat questionable because of the fractal structure of the
lung)

Jumping. When an animal wants to jump into the air, it must produce a certain amount of
energy which becomes its kinetic energy the moment it leaves the ground. The energy is produced
by accelerating the body over a distance, O (L), multiplied by the power it generates, O(L2). In
other words, the supply of kinetic energy = force � distance / O(L2) � O (L) = O

�
L3
�
. The

necessary potential energy for a jump of height H will likewise be H = Hmg / HL3, where m
is the mass of the animal. This therefore gives

HL3 = const. � L3; (107)

or that H is constant. Thus, we get the somewhat surprising result that all animals of the same
shape jump equally high!
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It should also be similar to jump down a certain height H and land in a controlled manner.
Cats seem to have this property, and otherwise it is alleged that the kangaroo and a jumping
mouse (which by their names would have slightly di¤erent size!) can jump equally high.

Running uphill. From the observation above, the power an animal manages to maintain will
be proportional to L2, and since the required power to keep a speed v up a hill with a slope angle
� is

(mg sin�) � v / L3 v; (108)

we obtain
v L3 = const. � L2; (109)

or
v / 1=L: (110)

Small animals can therefore keep a higher speed than large animals when running uphill.

Diving Animals. Assume that all animals during a dive are moving at speed v. The friction
force that must be overcome will typically be proportional to the square of the velocity and cross
sectional area of the animal, i.e. F / v2L2 (This may be concluded from formulas derived from
dimensional analysis). The total energy consumed within the water is F � (v � tmax), where tmax
denotes the maximum time it can stay under water. Since the energy stored in the animal will
be proportional to L3, then

L2 � tmax / L3; (111)

or
tmax / L: (112)

This means, in other words, that large animals can stay longer under water than small animals,
and this we know from the marine mammals.

We leave to the reader to speculate about any other scaling arguments, for example, what the
Mars and Jupiter residents look like.

Finally, we shall consider two examples from sport.

Weightlifting. For equally shaped weight lifters, the muscle strength is proportional to L2 and
the weight is proportional to L3. In other words, the force should be proportional to the weight
of power 2=3. Figure 9 shows that this holds astonishingly well.

Rowing. We consider boats with the same shape and the typical length L. The necessary input
power (due to friction and wave resistance, called drag) to maintain a speed vmax is the same here
as for diving animals,

vmax � F / v3maxL
2: (113)

The available power is proportional to the number of rowers, N and the displaced �uid volume of
the boat is also proportional to N or L3. Thus

L _ N1=3; (114)
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Figure 9: The world records in Snatch + Jerk + Press as a function of the lifter�s body weight (kroppsvekt).
Note that the line has slope 2=3 (The origin of the �gure is unknown).

and we obtain
v3maxL

2 _ N; (115)

or
vmax _ N1=9: (116)

It is surprising that the rate increases so slowly with the number of rowers, but Fig. 10 shows
that this indeed seems to be the case.

3 REGULAR PERTURBATION

In this section we shall consider a way to handle equations containing small parameters, and the
scaled equations from Case B and Case C in the case study in Sec. 2.3 are of this form. The
basic idea is to write the solution as a power series in the small parameter and determine the
terms in the series recursively. We shall take a closer look at this methodology and show how it
works on some simple examples. Regular perturbation is one of the most common techniques in
traditional applied mathematics, and is well treated in several textbooks. The presentation below
is incomplete, but adapted to what we are going to need.

We have a regular perturbation problem if we have an equation

D(x; � � � ; ") = 0; (117)

containing a small parameter " so that the full solution, xsol, approaches solution x0 of the reduced
equation

D(x; � � � ; 0) = 0; (118)
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Figure 10: Speed as a function of the number of rowers. The line has slope equal to 1=9. The origin of
the graph is unknown.

when " tends to 0. The statement is somewhat imprecise, as we say nothing about how xsol
approaches x0. If we then know that " is small (after the equation is scaled), we may approximate
the complete solution xsol with x0. This is pursued further by writing the solution in the form of
a power series in ",

xsol = x0 + "x1 + "
2x2 + "

3x3 + � � � : (119)

for then to come up with a sequence of simpler equations for x0, x1, � � � . Since " is small, we
expect that the terms in the series become smaller and smaller, and that the approximation gets
better the more terms we include. In practice, it is not that easy. The solution of the equations
for xi often gets more complicated as i increases, and power series do not tend to have very
impressive convergence properties.

If we forget about these objections, the method of regular perturbation is easy to state:

1. Write the solution as a power series in ",

xsol = x0 + "x1 + "
2x2 + "

2x3 + � � � (120)

2. Put the series into the equation and clean up the expression so that we obtain a new power
series in ",

D(xsol; ") = D(x0 + "x1 + "
2x2 + "

2x3 + � � � ; ");
= P (x0; 0) + P1(x0; x1)"+ P2(x0; x1; x2)"

2 + � � � (121)

3. Set each coe¢ cient in the series equal to 0 and solve the equations you then get recursively :

P0 (x0; 0) = 0;

P1(x0; x1) = 0;

P2(x0; x1; x2) = 0; (122)

� � �
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This method gives us x0; x1; x2; � � � , and the idea may be used in many connections:

� For approximate solutions to algebraic and transcendental equations

� For approximate expressions to integrals

� For ordinary and partial di¤erential equations

Perturbation analysis is often complementary to numerical techniques. In many situations,
numerical methods have problems when " is small (this is especially the case for singular per-
turbation discussed later). The perturbation analysis gives us the asymptotic relations which are
useful when " goes to 0, in contrast to a small number of numerical calculations where we need to
keep " �xed for each calculation. In other contexts there is no really small (or large) parameter
to use, and there is no way around numerical calculations.

Perturbation analysis had its best days before we had computers with opportunities for large
scale numerical calculations. In particular in the �eld of aerodynamics and other �uid mechanics.
perturbation analysis has been widely recognized. Today, there are computer programs for sym-
bolic manipulation that enables us to �nd perturbation solutions of orders we could only dream
about. However, sometimes pro�t is marginal, �if one does not achieve reasonable approximations
with one or two terms, there is often little to gain by calculating more terms.

3.1 The Projectile Problem

The Projectile Problem, discussed in the book of Lin & Segel [3], pp. 233, is a simple and instruc-
tive example of how regular perturbation works. The problem leads to a non-linear di¤erential
equation where it is not possible to write the solution in explicit form using elementary functions.

3.1.1 The Model

A projectile is sent vertically up from a planet without atmosphere. The motion is described by
the position x� (t�) above the planet�s surface, where t� is the time and

x� (0) = 0;
dx�

dt�
(0) = V: (123)

The projectile will be a¤ected by a force given by Newton�s law of gravitation,

F (x�) = �G Mm

(R+ x�)2
; (124)

where G is the gravitational constant, M is the planet�s mass, R the planet�s radius, and m the
projectile�s mass. Similar to Earth, the gravity force on the planet�s surface may be written as
F (0) = �mg, so that g = GM=R2. Thus, it follows that

m
d2x�

dt�2
= � R2gm

(R+ x�)2
: (125)

The mathematical model thus consists of the non-linear di¤erential equation

d2x�

dt�2
= � R2g

(R+ x�)2
; (126)

with the initial conditions stated in Eq. 123.
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3.1.2 Scaling

We are going to study a situation where V is much smaller than the planet�s escape velocity. If
V is larger than the escape velocity, the projective will leave the planet permanently. For Earth
the escape velocity is about 11.2km/s. However, here the assumption implies that x� (t�) � R
for the whole trip of the projectile. Under this assumption, the equation simpli�es to

d2x�

dt�2
= � R2g

(R+ x�)2
= � g

(1 + x�=R)2
t �g: (127)

This equation may easily be solved with the given initial conditions:

x� (t�) t �1
2
gt�2 + V t�: (128)

The approximate maximum height follows from Eq. 128 by observing that the time to maximum
height is approximately given by

dx�

dt�
� �gt� + V = 0; (129)

or

tmax t
V

g
: (130)

Thus,

xmax t �
1

2
g

�
V

g

�2
+ V

�
V

g

�
=
1

2

V 2

g
: (131)

Reasonable scales for Eq. 125, where we do not care about factors of 2, will now be

X =
V 2

g
; T =

V

g
: (132)

Inserted into the equation, this leads to

d2
�
V 2

g x
�

d
�
V
g t
�2 = � R2g�

R+ V 2

g x
�2 ; (133)

V 2

g
x (0) = 0;

d
�
V 2

g x
�

d
�
V
g t
� = V; (134)

and after cleaning up, we have the scaled equation:

�x = � 1

(1 + "x)2
; (135)

x (0) = 0; _x (0) = 1; " =
V 2

Rg
: (136)

It turns out that it is not possible to express the solution of this equation, x = x (t; "), by means of
elementary functions (this is not quite obvious!). Note that since the parameter " is approximately
equal to 2xmax=R, it is indeed small under the assumption we made above.
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3.1.3 Solution by Means of Regular Perturbation

We shall solve the equation 135 using regular perturbation according to the recipe above, and we
start by putting

x (t) = x0 (t) + "x1 (t) + "
2x2 (t) + � � � (137)

into the equation:

�x = �x0 + "�x1 + "
2�x2 + � � � = �(1 + "x)�2

= �
�
1 + (�2)"x+ (�2)(�3)

2
("x)2+ � � �

�
= �1 + 2"(x0 + "x1 + :::)� 3"2x20 + � � � (138)

= �1 + "2x0 + "2(2x1 � 3x20) + � � �

(Note the use of Newton�s binomial theorem). By collecting the coe¢ cients in front of each power
of ", we �nd the system

�x0 = �1;
�x1 = 2x0;

�x2 = 2x1 � 3x20; (139)

�x3 = 2x2 + 2x0x1 � 2x0
�
2x1 + x

2
0

�
� 2

�
2x1 � 3x20

�
x0;

� � �

To �nd the last equation, we had to expand the series in Eq. 137 to order "3. We must also decide
what to do with the initial conditions, but here it is reasonable to use

x0 (0) = 0; _x0 (0) = 1;

x1 (0) = 0; _x1 (0) = 0;

x2 (0) = 0; _x2 (0) = 0; (140)

� � �

Thus, x0 takes care of the initial conditions, which are consequently satis�ed no matter where we
stop the series expansion. The solution for x0 follows immediately from equation 139:

x0 (t) = t�
1

2
t2; (141)

and by introducing this into the next equation, in 139, we �nd

�x1 = 2x0 = 2

�
t� 1

2
t2
�
; (142)

or
x1 (t) =

1

3
t3 � 1

12
t4: (143)

Note that only the particular solutions change with every step, and that the contribution from
the homogeneous solutions disappear for xi (t) when i � 1.
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Commonly, the algebra quickly becomes quite complicated, but today we can make good use of
software for symbolic manipulation, such as Maple, MuPad, Mathematica, or the free wxMaxima
(Maple was used here):

x (t) = t� 1
2
t2 + "

�
1

3
t3 � 1

12
t4
�
+ "2

�
�1
4
t4 +

11

60
t5 � 11

360
t6
�
+O

�
"3
�
: (144)

From this solution, we also �nd a more accurate equation for the time to the maximum,

d

dt

�
t� 1

2
t2 + "

�
1

3
t3 � 1

12
t4
�
+ "2

�
�1
4
t4 +

11

60
t5 � 11

360
t6
��

= 1� t+ "t2 � 1
3
"t3 � "2t3 + 11

12
"2t4 � 11

60
"2t5 = 0: (145)

This is a �fth-degree equation, but since we expect the solution tm to be close to 1, we can, in
accordance with the foregoing, try a perturbation expansion:

tm = 1 + a"+ b"
2 +O("3): (146)

By introducing this into Eq. 145, we �nd

0 = 1�
�
1 + a"+ b"2

�
+ "

�
1 + a"+ b"2

�2 � 1
3
"
�
1 + a"+ b"2

�3 � "2 �1 + a"+ b"2�3+
+
11

12
"2
�
1 + a"+ b"2

�4 � 11
60
"2
�
1 + a"+ b"2

�5
+ � � �

=

�
�a+ 2

3

�
"+

�
a� 4

15
� b
�
"2 +O

�
"3
�
: (147)

This gives to O
�
"2
�

a =
2

3
; b = a� 4

15
=
2

5
; (148)

and
tm = 1 +

2

3
"+

2

5
"2 +O("3): (149)

It is reasonable that the time it takes up to a maximum increases a little from 1, since gravity
acting on the projectile becomes weaker as it rises. The �gure 11 shows some numerical solutions
created using MatlabTM .

The perturbation expansion to zeroth, �rst and second order are compared to the numerical
solution on the �gures 12 and 13.

3.1.4 Analytical Solution

As remarked above, is not possible to express the full solution of

�x = � 1

(1 + "x)2
; x(0) = 0; _x(0) = 1; (150)

in closed form by means of elementary functions. However, it is possible to do something. After
multiplying the equation with _x;we �nd

d

dt

�
_x2=2

�
=
d

dt

�
1

"

1

1 + "x

�
; (151)
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Figure 11: Numerical solutions shown for " = 0 (0:1) 3. When " � 2, the initial speed is above the escape
speed, and the projectile never returns to x = 0.
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Figure 12: Numerical solution and perturbation solutions for " = 0:1. The numerical solution (thick
line) and the perturbation solutions to �rst and second order collapse on the graph. The solution for x1 is
di¤erent, however.
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Figure 13: Similar to previous �gure for " = 0:4. Numerical solution: thick curve; x0 and x0 + "x1: thin
curve; x0 + "x1 + "2x2: dashed curve.

or that
_x2

2
� 1
"

1

1 + "x
= constant: (152)

This tells us that the motion is conservative, such that the sum of the potential and kinetic
energies is constant. By introducing the initial conditions x (0) = 0 and _x (0) = 1, we �nd that
the constant is equal to 1=2� 1=". This leads to a �rst order non-linear equation:

_x2 =
1 + ("� 2)x
1 + "x

; x(0) = 0: (153)

If " < 2, _x will be 0 for

xmax =
1

2� ": (154)

This is therefore the exact expression for the maximum height of the projectile when " < 2. If
" > 2, the speed will always be greater than 0 and the projectile continues to the boundaries of
the universe. Note that for Earth, " = 2 means that

V =
p
2Rg =

r
2� 40000000

2�
� 9:81m

s
t 11:17km/s, (155)

which is therefore the escape velocity referred to above.

By taking the square root of Eq. 153 and separating the variables, and as long as _x � 0, we
may write the solution of Eq. 153, implicitly as

t =

xZ
0

s
1 + "s

1 + ("� 2)sds: (156)

This integral turns out to be solvable,Z r
a+ s

b� s ds =
a+ b

2
arcsin

�
2s+ a� b
a+ b

�
�
p
(a+ s)(b� s) + C = F (s; a; b) + C: (157)

36
Mathematical Modeling and Simulation, MASTMO Autumn 2011



Thus,

t =

xZ
0

s
1 + "s

1� (2� ")sds =
r

"

2� "

xZ
0

s
1="+ "s

1=(2� ")� sds

=

r
"

2� "

�
F (x;

1

"
;
1

2� ")�F (0;
1

"
;
1

2� ")
�
: (158)

Since we already know that

xmax =
1

2� "; (159)

when " < 2, we also �nd an exact expression for tm:

tm =

1=(2�")Z
s=0

s
1 + "s

1� (2� ")sds =
�
2 � arcsin(1� ") +

p
(2� ")"

(2� ")3=2"1=2

= 1 +
2

3
"+

2

5
"2 +

8

35
"3 +O

�
"4
�
: (160)

The start of the power series is similar to what we found in Eq. 149.

3.2 Florence Gri¢ th Joyner and the World Record in 100 meters

Florence Gri¢ th Joyner, �Flo-Jo� (1959�98) was an American track runner who is still (as of
this writing) the holder of the o¢ cial world record in 100 meters, 10.49s. The record was set
during a quarter-�nal of the US qualifying heats for the Seoul Olympics in 1988. The wind gauge
registered 0 m/s, while many argued that there was considerable tailwind, estimated to about 4
m/s, and that the meter did not work. In the rest of the qualifying races she ran on times around
10.7s.

A sprinter is dependent on the pushing force she/he is able to produce. This force may be
writtenMp�, whereM is the runner�s mass and p� a parameter with the unit of acceleration. The
maximum pushing force is thus MP , where P is the maximum p� the runner is able to produce.

In addition, there are two forces slowing the sprinter: air resistance and internal friction.
The internal friction, which represents the resistance of muscles and joints, is believed to be
written in the formMu�=� , where u� is the runner�s speed and � is a characteristic time constant.
Measurements of di¤erent runners, including Ben Johnson and Carl Lewis, have given P � 10m/s2
and � � 1s, and we shall use these values below.
Based on Newton�s second law, we can now write the equation of motion for the sprinter

M
du�

dt�
=Mp�(t�)�Mu�

�
� Fl; (161)

where F1 represents the air resistance. The expression for the air resistance may be found by
dimensional analysis. It is reasonable to assume that Fl depends on the air density, �air, airs
kinematic viscosity �, the runner�s velocity u�, and the runner�s cross-sectional area A in the
direction of motion. In addition, we need a length scale L, for which we may use

p
A. It is left to

the reader to show that from dimensional analysis we may now write

Fl =
1

2
�luftCD (Re)Au

�2; (162)
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where CD is an unknown function, the so-called drag coe¢ cient, which depends on Reynolds
number, Re=

p
Au�

� .

Let us now scale Eq. 161. Since we already know that � is a typical time constant, we decide
to use this as our time scale. We know the maximum P , and because of its unit, this is a natural
scale for the acceleration. Thus, we scale the velocity by using P� and obtain

_u(t) + u(t) + "u(t)2 = p(t); (163)

where

" = 1
2�lCD

 p
Au�

�

!
�2P A

M : (164)

Now CD itself is depending on the speed, but measurements of air resistance for irregular bodies
have shown that CD is almost constant for 2� 104 < Re < 106, which covers mainly what we are
facing here. This value of CD is close to 1, which we for simplicity shall use below. With P and
� given as above, A � 0:45m2 and �air � 1:2kg/m, " is thus about 0.035 for an athlete weighing
70 to 80 kg. Since juj � 1, we conclude that the air resistance is a relatively small term in the
equation.

In order to solve 163 by regular perturbation, we write

u(t) = u0(t) + "u1(t) +O("2) (165)

and put this in 163:

_u0 + " _u1 +O("2) + u0 + "u1 +O("2) + "(u0 + "u1 +O("2))2 = p: (166)

We collect all parts of the same order in " and use u(0) = 0 as the initial condition. This gives
us a sequence of �rst order equations:

_u0 + u0 = p; u0(0) = 0;

_u1 + u1 = �u20; u1(0) = 0; (167)

_u2 + u2 = �2u0u1; u2(0) = 0;
...

In order to solve the equations, we must also decide what to use for the acceleration p(t). Let
us for simplicity assume that p� (t) = P , that is, p(t) � 1. The �rst two terms of perturbation
expansion are thus determined by

_u0 + u0 = 1; u0(0) = 0;

_u1 + u1 = �u20; u1(0) = 0; (168)

and we easily �nd that the solution to order " is

u(t) = 1� e�t + "[�1 + 2te�t + e�2t] +O
�
"2
�
: (169)

By plotting the graph we see that the sprinter reaches maximum velocity (u0(t) � 1) approxi-
mately at t = 3, that is, after 3� = 3 seconds.
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Let us now assume that we have a winds blowing parallel to the running direction. This leads
to a modi�ed drag

Fl =
1
2�lCDA(u

� �W )2: (170)

Wind speed is scaled similar to the runner�s speed, so that in dimensionless variables the dimen-
sionless wind is given by � =W=(�P ).

Let us determine the maximum velocity U a sprinter can hold as a function of � to the �rst
order in ". The maximum speed is achieved when the acceleration is zero, i.e., given by the
equation

U + "(U � �)2 = 1: (171)

Check that the solution to �rst order in " is

U = 1� "(1� �)2 +O("2): (172)

We assume that Florence performed her maximum in all races and (somewhat unrealistically)
that she had the maximum speed throughout the race. The maximum speed without wind is
U0 = 1� ", while U4 = 1� 0:36" with a tailwind equal to 4m/s, that is, � = 0:4. The total time
used for 100m will be T = (100m) =U , and thus

T0=T4 = (1� 0:36")=(1� "): (173)

To get an idea of what this means in time, we must �nd �her� ". We assume that she has the
same acceleration, cross-sectional area and drag coe¢ cient as the one above. Her weight, however,
should be somewhat less, let�s say 60 kg. That gives " � 0:04. Expressed in time 4 m/s tailwind
gives about

10:7s � 1� 0:04
1� 0:04� 0:36 = 10:42s. (174)

As she accelerated the �rst three seconds, this �ts very well with the time she actually used. It
should also be noted that she ran on 10.54s in the �nals, but then the tailwind was about 2m/s
(Was that reasonable?).

3.3 Modeling the Kidney Function

This modeling example is also thoroughly covered in [3], Chapter 8, The example deals with the
whole process of physical understanding, formulation of mathematical model, scaling, and �nally
regular perturbation. In the modeling we meet conservation principles that will also be important
later in the course.

After observations of kidney tissue, J. Diamond suggested in 1967 that salt and water are
expelled from the kidneys in an indirect way by means of secondary channels. Such channels
have been found in the walls of the main channels, and it is speculated that this might explain
how kidneys work. The proposed mechanism is outlined in Figure 14. At the inner end of the
secondary channels there are chemical pumps that send salt into the channel with the consump-
tion of chemical energy. Consequently, the solution in the channel has higher salt concentration
than the surrounding tissue and the main channel. This means that there is a gradient in the
salt concentration towards the opening. Concentration di¤erence between the channel and the
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Figure 14: Sketch showing how one thinks that the kidneys are functioning.

surrounding tissue causes the water to enter the channel through the walls because of osmosis.
The water �owing into the main channel transports at the same time the salt out of the channel.
Under stationary conditions we get a so-called standing gradient in the salt solution in the chan-
nel. Actually, salt is transported in the channel both by di¤usion and by convective transport by
the water �ow. The problem we are facing, is to set up a mathematical model for a secondary
channel and determine how the salt concentration and water �ow vary in the channel, and, in
particular, how e¤ective the proposed mechanism might be.

The description above includes a number of concepts that we �rst need to consider. Molecular
osmosis is an important mechanism in biological systems. Osmosis involves transport through
membranes that are so �nely meshed that they do not allow large molecules to pass through the
channel. In our case the channel wall is modeled as an osmotic membrane, sketched in Fig. 15.

If the ion concentrations on the sides of the membrane are C1 and C2 respectively, the net
amount of water passing through the membrane per area and unit time, J , may be written as

J = P (C2 � C1): (175)

The constant P is called permeability. The units of the variables in this equation are as follows:

[J ] =
Volume

Area� Time =
m3

m2s
=
m
s
;

[C] =
# ions
Volume

=
osmol
m3

; (176)

[P ] =
m/s

osmol/m3
=

m4

osmol � s :

The unit osmol is used in [3], but is actually not necessary since the number of ions for thin
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Figure 15: An osmotic membrane in a salt solution lets water molecules through, but not Chlorine and
Sodium ions.

salt solutions will be twice the number of salt molecules, and therefore proportional to the salt
concentration measured in kg/m3.

We shall later return to the concepts of di¤usion and �ux. The transport of dissolved salt in
a solution that is otherwise at rest, is mainly due to concentration di¤erences:

F = �D@C
@x
: (177)

Here F is called di¤usive �ux of salt (in the x-direction), and D is called the di¤usion coe¢ cient.

Flux is in general the amount that passes through an imaginary surface per time and unit
area. The unit of �ux of salt is thus

[F ] =
Amount

Area� Time =
osmol
m2s

; (178)

and since [C] =osmol/m3, then, from Eq.177,

[D] =
m2

s
: (179)

If a salt solution with concentration C is moving in the x-direction with velocity V , the
expression for the convective �ux is derived by considering Fig. 16. During one second the
shaded volume passes through the surface with area A.

The expression for the �ux is thus

Fkonv =
V � 1s �A � C

A � 1s = V C: (180)

The total �ux will be the sum of the contributions (this will be discussed in more depth later):

F = Fdiff + Fkonv = �D
dC

dx
+ V C: (181)

Chemical pumps are able to push the saline through the tissue (the body) by the consumption
of chemical energy (that is about all that this author knows about it). The strength of a chemical
pump is de�ned by its strength, N0,

[N0] =
Amount

Wall area� Time =
osmol
m2s

: (182)
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Figure 16: Convective �ux : The solution with a salt concentration C� is moving with speed v� in the
x-direction.

3.3.1 Formulation of the mathematical model

Figure 17 is a sketch of how we can imagine a one-dimensional mathematical model of the channel
in the form of a straight tube of length, L, cross section, A, radius, c, and an active zone for the
chemical pumps of length �. We need to ask the biomedical and physical expertise to get an idea
forthe size of the variables we have introduced. We shall return to the scaling below, but it is
already here worth noting that the channels are thin (the diameter is only 0,001�0.01 times their
length), so it must be su¢ cient to imagine a one-dimensional model.

As usual, we let non-scaled variables have an extra *, which is removed after the scaling. The
water coming in through the wall (per unit area) due to osmosis at the location x� will be

J = P [C�(x�)� C0] : (183)

The salt in the channel is transported both by di¤usion and convection, and therefore

F � = Fd + Fc = v
�C� �DdC

�

dx�
: (184)

The chemical pumps enter an amount of salt per time unit equal to N0(�c).

We have been asked to determine the so-called emergent osmolarity, Os�, de�ned by F �(L) =
v�(L)Os�:

Os� =
F �(L)

v�(L)
=
v�(L)C�(L)�D dC�

dx� (L)

v�(L)
: (185)

This is the equivalent salt concentration that would have the same out�ow of salt, if the solution
had speed v� and there was no contribution from di¤usion.

The basic principle of the modeling is the preservation or conservation of salt and water. This
is the mathematical concept for the everyday expression that �what goes in must come out�.
Conservation of water for a part of the channel between x� and x� +�x� can be illustrated as in
18. The terms of Qinn and Qut (�ow of water in and out per time unit) are simple:

Qinn = Av
�(x�);

Qout = Av
��(x� +�x�) (186)

(Check this out by a similar argument to the one in Fig. 16). For Qos it must be possible to write

Qos = P (C
�(x�+~x�)� C0) � (�x� � c) ; (187)
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Figure 17: Sketch of one-dimensional mathematical model of the secondary channel.
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Figure 18: Illustration of the conservation of water for the section of the channel between x� and x�+�x�.
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where x� � ~x� � x� +�x�, and �x� � c is the wall area. Since Qout �Qin = Qos, we have

Av�(x� +�x�)�Av�(x�) = P (C�(x�+~x�)� C0) � (�x� � c) : (188)

By dividing by �x� and letting �x� ! 0, we �nd the di¤erential equation

dv�

dx�
=
Pc

A
[C�(x�)� C0] : (189)

Conservation of the salt can be set up just as easily:

Qsaltut = AF �(x� +�x�);

Qsaltinn = AF
�(x�); (190)

Qsaltk:p: = N
�(x�) � (c�x�) ;

where N�(x�) = N0 when x� � �, and equal to 0 otherwise. By letting �x� ! 0, we derive in a
similar way

A
dF �

dx�
=

�
N0c; x� < �;
0 � � x�: (191)

This simple equation can be solved immediately. For x� < � we �nd, since F � (0) = 0 (we assume
that nothing enters through the end surface),

F � =
N0c

A
x�: (192)

For the rest of the channel �ux is constant. Since the �ux has to be continuous at x� = � (think
of what that means!),

F � =
N0c

A
�: (193)

This gives us now the following di¤erential equation for C�:

C�v� �DdC
�

dx�
=

�
N0c
A x

�; x� < �;
N0c
A �; � � x�: (194)

Together with equation 189 we have got two non-linear, coupled di¤erential equations for C� and
v�. Before we try to solve them, we need to specify boundary conditions for the ends of the
channel, as well as the continuity conditions (also called �matching�conditions) at x� = �.

At x� = 0 it is clear that
v�(0) = 0; F �(0) = 0: (195)

(We consider the end of the channel to be closed). This implies, by means of equation 194, that

dC�=dx� (0) = 0:

At the outer end of the channel, it is reasonable to use

C�(L) = C0: (196)

Finally, we consider x� = �. It is clear that both F �, v� and C� must be continuous (Think about
it. Di¤usion ensures that C� does not develop discontinuities). Thus we may write

F �(�+) = F �(��);
v�(�+) = v�(��); (197)

C�(�+) = C�(��):
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Quantity Unit Min. value Typical value Max. value
r cm 10�6 5�10�6 10�4

L cm 4�10�4 10�2 2�10�2
� cm 4�10�5 10�3 2�10�3
D cm2=s 10�6 10�5 5�10�5
N0 mOsm/cm2s 10�10 10�7 10�5

P cm4=s mOsm 10�6 2�10�5 2�10�4
C0 mOsm/cm3 � 3�10�1 �

Table 6: Overview of variables and parameters of the model. Here r is the radius of the channel, assumed
to have a circular cross section.

Check from Eq. 194 that then also

dC�

dx�
(�+) =

dC�

dx�
(��): (198)

We sum up the mathematical model:

Equations:

dv�

dx�
=
Pc

A
(C�(x�)� C0) ; 0 � x� � L; (199)

C�v� �DdC
�

dx�
=

�
N0c
A x

�; x� < �;
N0c
A � � � x�: (200)

Boundary conditions:

v�(0) = 0; C�(L) = 0; (201)

v�; C� is continuous for x� = �: (202)

Determine

Os� =
F �(L)

v�(L)
=
cN0�=A

v�(L)
: (203)

3.3.2 Scaling

Here we need �rst to obtain information about the values of variables parameters involved, and
Table 6 has been copied from [3] (Table 8.2, p. 264).

We may use both L and � as the length scale, but choose we follow [3] and use �. The
concentration scale is self-evident, namely C0, while the velocity scale requires some creativity.
Lin and Segel [3] propose to compute the velocity scale U by balancing the amount of salt
produced per time unit with the amount leaving the channel by convection if the concentration
is C0. In other words,

cN0� = C0 � (AU) ; (204)

or

U =
cN0�

C0A
: (205)

We may then set
x� = �x; C� = C0C; v

� = Uv; (206)
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Dimensionless parameter Min. value Typical value Max. value
" 10�5 2�10�2 102

� 4�10�3 75 1010

� 10 10 500

Table 7: The size range of the dimensionless parameters.

and leave to the reader to check that we can write the result as

"
dv

dx
= C � 1; 0 � x � �;

Cv � �dC
dx

=

�
x; 0 � x � 1
1 1 � x � � ; (207)

with conditions

v(0) = 0; C(�) = 1; (208)

v; C; dC=dx continuous at x = 1; (209)

and the three dimensionless parameters:

" =
N0
PC20

;

� =
AC0D

N0�2c
; (210)

� =
L

�
:

The dimensionless emergent osmolarity then becomes

Os =
Os�

C0
=

1

v(�)
: (211)

The range of magnitude of the dimensionless variables can now be estimated from Table 6, and
the result is shown in Table 7.

3.3.3 Perturbation Analysis

Our equations do not look di¢ cult at �rst glance, but they are nonlinear and coupled, and the
initial conditions of C and v are given at the opposite ends of the channel.

Since " will typically be small, it is natural to attempt a perturbation series, and Lin and Segel
describes here how they �rst got stuck by inserting

C = C0 + "C1 + "
2C2 + :::;

v = v0 + "v1 + "
2v2 + ::: (212)

in equations 207 (Note that C0 is here 0-th order solution for C and not the concentration scale).
Check that we obtain C0 = 1 to order " , and

1v0 + �
dC0
dx

=

�
x
1
; (213)
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that is,

v0 =

�
x 0 � x � 1;
1 1 � x � �: (214)

This looks good so far, but to order " we derive

C1 (x) =
dv0
dx

=

�
1; 0 � x � 1;
0; 1 � x � �; (215)

in other words, C1 is discontinuous. Also the perturbation solutions should be continuous!

It is therefore something fundamentally wrong with the assumptions we have made. If we look
at the expressions for " and �, N0 occurs in the numerator in " and in the denominator for �.
In addition, it appears that N0 can vary over more than 12 powers of 10. This means that if "
is small, then � tends to be large. Lin and Segel now try to introduce more stable parameter �
de�ned by

� =

�
�2=�2

�
"

: (216)

The essential point here is that � _ "�1, whereas the chosen form simpli�es the expressions. If
we insert this, we get a set of modi�ed equations,

C � 1 = "dv
dx
; 0 � x � �; (217)

"�2Cv � �2dC
dx

= "�2
�
x; 0 � x � 1
1; 1 � x � � ; (218)

v(0) = 0; C(�) = 1; (219)

v; C; dC=dx continuous at x = 1: (220)

Moreover,

" =
N0
PC20

; � =

�
�2

��

�1=2
=

�
cPC0L

2

AD

�1=2
; � =

L

�
: (221)

Before we start a new perturbation analysis we can test the problem with some numerical
experiments. The equations are a �rst-order system, but to solve them in the standard way, we
must start C (x) and v (x) in the same point. If we choose to start at 0, then we need to vary
C (0) so that we really hit C (�) = 1. This is called solving by a �shooting method�. The search
for the starting value can be build into the program, but here it is just as easy to use �trial and
error�. MatlabTM -code needed to solve the equations is simple:

x0 =[0, 1.0355]; tspan = [0, 10];

[t,x]=ode45(�nyre�,tspan,x0);

subplot(2,1,1);plot(t,x(:,2));

subplot(2,1,2);plot(t,x(:,1));

The function that de�nes the equations:

function xdot=nyre(t,x)

lambda = 10.;

kappa = 1;

eps = .5;
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Figure 19: Solution obtained with the "shooting method". Parameter values: � = 10; � = 1; " = :5:
In order to end in 1 for x = 10, C (0) must be about 1:0355.

A= eps*kappa^2/lambda^2;

xdot(1)=( x(2)-1 )/eps;

xdot(2)=A*x(1)*x(2)-A*min(t,1);

A sample result is shown in Figure 19. Let us now look at the modi�ed equations, and try a
perturbation analysis as given in Eq. 212. To order "0 we obtain as before C0 = 1; but now the
equations to order " are more interesting:

C1 =
dv0
dx
; (222)

�2C0v0 � �2
dC1
dx

= �2
�
x
1

�
; (223)

that is,

�2v0 � �2v000 = �2
�
x
1

�
(224)

for v0. This equation must be solved for both the right side and put together so that the boundary
condition at 0 and continuity conditions in x = 1 holds. We leave it to readers to check the
following solution for 0 � x � 1:

v0 = x�K1 sinh
��
�
x
�
; (225)

C1 = v
0
0 = 1�K1

�

�
cosh

��
�
x
�
: (226)

The solution for 1 � x � �:

v0 = 1�K2 cosh(
�

�
x� �); (227)

C1 = v
0
0 = �K2

�

�
sinh

��
�
x� �

�
(228)
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Figure 20: Dimensionless osmolarity to �rst order in Eq. nref{os}.

(note that C1(�) = 0!).

The constants K1 and K2 are determined by the continuity conditions at x = 1:

K1 =
�

�

cosh (�=�� �)
cosh (�)

; (229)

K2 =
�

�

sinh (�=�)

cosh (�)
: (230)

The dimensionless osmolarity is approximately

Os =
1

v(�)
� 1

v0(�)
=

1

1�K2
; (231)

and plotted for some values of � on Fig. 20.

If we assume that �=� < 1, we may write

Os � 1

1�K2
� 1

1� 1
cosh(�)

=
cosh(�)

cosh(�)� 1 ; (232)

and if in addition � < 1,

Os � cosh(�)

cosh(�)� 1 �
1 + �2=2 + :::

�2=2 + :::
� 2

�2
+ 1: (233)

3.3.4 Epilogue

Lin & Segel [3] conducted this analysis in the seventies. Today we would have started with carrying
out some numerical experiments. But since the problem has three dimensionless parameters, it is
di¢ cult to obtain a full understanding only by doing this. It is interesting that the straightforward
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�naive�perturbation expansion breaks down, and that the modi�ed perturbation solution seems
to give a very reasonable answer already to leading order (details are left to the reader to check
out).

To leading order the emergent osmolarity is only dependent on � and �. The perturbation
expansion therefore gives an analytical insight that is not so easily obtained by numerical exper-
iments alone.

The dimensionless parameters that we end up with often express important properties of the
model we have created. This is the case also in this example, where the parameter � can be
interpreted as follows:

�2

2
=
PcC0L

2

AD2
=
PcC0L

2

AD2

�C � C0
�C � C0

=

�
cLP ( �C � C0)

�
C0

1
A

D
�
�C � C0

�
=(L=2)

: (234)

( �C is the mean concentration in the channel). The water entering by osmosis is approximately
equal to cLP ( �C � C0), and consequently the convective �ux of salt out of the channel is

Fconv: � PcL( �C � C0)�C0 �
1

A
: (235)

Similarly, we can write

Fdiff � �D
�
dC�

dx�

�
� D

�C � C0
L=2

: (236)

Thus,
�2

2
� Fconv:
Fdiff:

; (237)

and

Os =
Os�

C0
=

F �(L)

v�(L)C0
=
Fconv: + Fdiff

Fconv:
= 1 +

Fdiff
Fconv:

� 1 + 2

�2
; (238)

which we also found above.
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4 SELECTED EXERCISES

Hint : Use Wikipedia or Internet for sorting out basic physical concepts.

4.1 Dimensional Analysis

Exercise 1

State the SI-units for the following physical quantities: (i) Acceleration, (ii)Mass density, (iii)
Electrical power, (iv) Air pressure, (v) Speci�c heat capacity, (vi) Heat conduction coe¢ cient.

Exercise 2

Mechanical stress has the same unit as pressure (Force per unit area). For a Newtonian �uid
(like water and air) �owing in the x-direction the so-called shear stress on a plane parallel to the
xy-plane is given by

� = �
@u (x; y; z)

@y
; (239)

where u is the velocity in the x-direction at (x; y; z). What is the unit for the constant �, called
the dynamic viscosity?

Exercise 3

Which combinations of core variables from the set fR1; � � � ; R6gmay be used if the dimensional
matrix is

R1 R2 R3 R4 R5 R6
F1 1 1 �1 0 2 2

F2 �2 �1 1 0 �3 �2
F3 0 1 0 1 0 2

:

Exercise 4

An open cylindrical tank with diameter, D, is �lled to height, h, with a �uid of density, �.
The bottom has thickness, d, and an elasticity module, E (E is measured in Pascal, like stress).
Because of the weight of the �uid, the bottom will sink somewhat, most at the center (No sinkage
at the rims). Show that the sinking (distance, �) in the centre of the bottom may be expressed as

�

D
= �

�
h

D
;
d

D
;
E

Dg�

�
; (240)

where g is the acceleration of gravity.

Exercise 5

A skydiver in free fall with speed U experiences a drag (friction force ) from the surrounding
air. The drag may be written as

Fd =
1

2
�airAU

2�

 
U
p
A

�

!
; (241)

where �air is the density of air, A is the cross-sectional area of the skydiver, and � the kinematic
viscosity of the air.

(a) Show how this expression for Fd may be found by dimensional analysis (Hint : Use, if
necessary, the formula in Eq. 241 �rst to determine the units of the involved parameters).
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(b) After a while the free fall jumper will be falling with constant speed. Find an expression
for this speed if we assume that �(x) = 1.

(Hint : The force of gravity, pulling the skydiver downwards, is Fg = mg, where m is the
skydiver�s mass and g the acceleration of gravity. Use that Fg is equal to Fd when the speed is
constant).

(c) Estimate the free fall speed in km/hour if we assume that � (x) = 1.

Exercise 6

An industrial tank holding a chemical liquid has a hole near the bottom. The chemical is
�owing through the hole at an amount Q, measured in m3/s. It is reasonable to assume that Q
depends on the diameter of the hole and the pressure di¤erence �p in the �uid between the inner
and outer sides of the hole. In addition, we expect that the �ow is governed by the �uid�s density
� and dynamic viscosity �. Use dimensional analysis to show that the expression for Q under
these assumptions may be written

Q =
d2�p1=2

�1=2
�

 
d�1=2�p1=2

�

!
; (242)

where � is an unknown function of only one variable.

Exercise 7

The force (F ) on an aircraft propeller depends on its diameter, d, the speed of the airplane,
U , the density of the air, �, the number of rotations per second, !, and the viscosity of the air, �.

Show how dimensional analysis is used to �nd the formula

F = �U2d2�

�
!d

U
;
Ud

�=�

�
; (243)

where � is an unknown function in two variables (Hint: Use, if necessary, Eq. 243 to �nd the
units for the variables).

Exercise 8

By measuring the pressure drop p in a tube vs. the time t it took to �ll a cup with volume
V , Bose, Bose and Ruert around 1910 found the relations on Fig. 21 (left) for water, chloroform,
bromoform and mercury. Show, by introducing dimensionless variables (using the density � and
viscosity �; [�] = kg s�1m�1 ), that it exists one common relation covering all the cases. That
is, �nd the variables along the axes in von Kárman�s alternative presentation of the same data,
as shown in the �gure to the right.

Exercise 9

We consider an elastic rubber band which may be stretched many times its original length l0.
The rubber band has a �density� � which we measure in mass per unit length, that is, kg/m.
How does the density � vary when we stretch the band to a length l from its original length l0
and density �0? After stretching the band more that twice its original length, we pluck the band
like a guitar string. This experiment shows, somewhat unexpected, that the pitch (=frequency !)
remains almost constant when we vary the length (try it !). However, when stretching the band up
towards its breaking limit, the frequency increases somewhat. The force F required for stretching
the band to length l is proportional to l� l0 over most of the range, that is, F = F0 l�l0l0 , where F0
is a constant. Use dimensional analysis to explain the behaviour of the frequency. (Hint : Assume
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Figure 21: Presentation of the data in the original paper (left) and vonKarman�s revised graph after
applying dimensional analysis (right).

�rst that ! = f (l; �; F ), apply dimensional analysis, and then introduce the expression of the
density as a function of l; l0 and �0).

Exercise 10

In forest assessment one wants to estimate the volume V (also called the cubic content) of a
tree by measuring its height (h) and diameter (d) at the root. A test example in Minitab suggests
the following formula (based on multilinear regression) for American cherry trees:

V 1=3 = �0 + �1d+ �2h+ �3d
2: (244)

Here f�ig are regression coe¢ cients calculated from a set of calibration data.

(a) Americans use foot and most of the rest of the world meter as the basic length unit. Is it
possible to use the same values for f�ig in both cases?
(b) Show that dimensional analysis, based on the variables v, d, and h; instead recommends

applying a relationship of the form
�1 = � (�2) : (245)

Find �1 and �2, and give examples of what the function � could be for some �idealized trees�,
e.g. cylinders and cones.

(For students who know Minitab, it might be interesting to check which of the models are best:
The model in Eq. 244, or a regression model based on 245. The calibration data used in Minitab
14 are stored in the MTW �le trees.mtw)

Exercise 11

The necessary force (F ) to keep a ship at a constant speed (U) depends on its shape; primarily
the length (L), width (W ), and its depth into the water (D). In addition, the water density, �,
the viscosity, �, and the acceleration of gravity, g, play a part.

Use dimensional analysis to �nd an expression for the force which includes the two most famous
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dimensionless numbers in ship design:

Froude number : Fr = U=
p
Lg; (246)

Reynolds number : Re = LU=�: (247)

Ideally, a scale model1) of the ship should be tested experimentally in water by keeping the
dimensionless numbers for the model equal to those of the original ship. Is this really possible?

(Hints: [F ] = kgm=s2, [�] = kg/m3, [�] = m2=s, [g] = m=s2).
1) A scale model is a model of the ship with the same geometric shape, but with a smaller size

(Say, L =1m for the model, compared to 200m for the original ship).

4.2 Scaling and Regular Perturbation

Exercise 1

State what it means to scale (i) a physical quantity, (ii) an equation.

Exercise 2

The following expressions have been proposed as the time scale for the function u� (t�) =
A cos (2�f0t

�):

T = 1=f0;

T = 1= (2�f0) ; (248)

T = 1= (�f0) ;

T = 500�f�10 :

May all these be used as the time scale?

Exercise 3

A common mathematical model for the size of a population y� (t�) as a function of time t� is
described by the logistic equation

dy�

dt�
= ry�

�
1� y

�

K

�
: (249)

Here r is called the growth rate and K the sustainable capacity.

(a) Which scale is suitable for y�?

(b) Determine a time scale when y� � K.

(c) Introduce these scales into the equation so that it becomes dimensionless (The equation
can easily be solved by inserting y = 1=u and solving for u).

Exercise 4

In many dynamic systems one talks about time constants. For an exponential function, u (t) =
A exp (�at) ; the time constant is de�ned as follows: First draw the tangent to u (t) at t0. This
tangent is crossing the x-axis at t1, and the time constant is de�ned T = jt1 � t0j. Show that
this de�nition also follows from the rule of thumb,

T =
max ju (t)j

max jdu (t) =dtj : (250)
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Exercise 5: Case B in the discussion of the falling sphere in a �uid led to the equation

2�x+ " _x = 1; x (0) = 0; _x (0) = 0; 0 < "� 1: (251)

This equation has the exact solution

xsol (t) =
2

"2

�
e�"t=2 � 1

�
+
t

"
: (252)

(a) Determine x0; x1 and x2 in the regular perturbation expansion

x (t) = x0 (t) + "x1 (t) + "
2x2 (t) + � � � ; (253)

and show that it agrees with the start of the power series development in " of the exact solution.

(b) An approximate solution xa (t; ") is a uniform approximation to the exact solution, xsol,
on the interval [0; 1] if

lim
"!0

�
max
t2[0;1]

jxa (t; ")� xsol (t)j
�
= 0: (254)

Does this apply to xa (x; ") = x0 (t) + "x1 (t)? What if we replace [0; 1] with[0;1)?

Exercise 6

Consider the problem

y00 (t) + "y0 (t) + 1 = 0; (255)

y (0) = 0 ; y0 (0) = 0; 0 < "� 1: (256)

Determine the start of the perturbation expansion y0 (t) + "y1 (t)+ "2y2 (t) to the solution for
t � 0. Compare to the exact solution. (Hint : The general solution of Eq. 255 has the general
form y (t) = A+Be�"t � t=")
Exercise 7

This problem is somewhat similar to the sphere falling in a �uid (the scaling model problem
without gravity), but in this case the friction is more realistic and nonlinear. The equation may
be written

m
dv�

dt�
= �av� + bv�2; v� (0) = V0: (257)

and
v� (0) = V0: (258)

We have been told that a; b > 0, and also that bV0 � a.

(a) Find the (obvious) scale for v� and then the scale for time, T , from the simpli�ed equation,
mdv�

dt� = �av
�, by the rule of thumb

T =
max jv� (t)j

max jdv� (t) =dt�j : (259)

Show that this scaling leads to the equation

dv

dt
= �v + "v2; (260)

v (0) = 1; "� 1: (261)
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(b) Determine v0 and v1 in the series expansion v (t) = v0 (t) + "v1 (t) + � � � . Is this result
reasonable for all t > 0 when the general solution of _y + y � "y2 = 0 is

y (t) =
e�t

C + "e�t
? (262)

Exercise 8

During the modeling of the sprinters, we derived the equation

M
du�

dt�
=Mp�(t�)�Mu�

�
� Fair; (263)

where M is the runner�s mass, u� the velocity, p� a �performance variable�, � a time constant,
and Fair the air resistance.

(a) Explain why the term for air resistance, found from dimensional analysis, ought to be
stated as

Fair =
1
2�airCD (Re)A(u

� �W ) ju� �W j : (264)

(Here �air is the air density, Re the Reynolds number and A the runner�s cross-sectional area).

After scaling,

p� = Pp; (265)

t� = �t; (266)

u� = (P�)u; (267)

and without wind, the equation becomes

_u(t) + u(t) + "u(t)2 = p(t); (268)

u (0) = 0; (269)

where
" = 1

2�lCD (Re) �
2P A

M : (270)

(b) Estimate " for Usain Bolt and Florence Gri¢ th-Joyner when we assume here and below
that �air = 1:2kg/m3, CD (Re) � 1, P = 10m/s2 and � = 1s.
(c) Verify that the solution of Eq. 268 with p (t) � 1 will be

u(t) = 1� e�t + "[�1 + 2te�t + e�2t] +O
�
"2
�
: (271)

(d) We scale the wind speed in the same way as u�, so that

u� �W = (P�) (u� �) : (272)

Show that the dimensionless maximum speed umax (when umax > �) is given by

umax + "(umax � �)2 = 1: (273)
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(e) Show that in order to determine the more exact time spent on the running, Ta, on the basis
of this model it will be necessary to solve the equation

L

P�2
=

Z Ta=�

0
u (t) dt; (274)

where L = 100m.

(f) The discussion in the last few paragraphs of the course note is rough, since it is assumed
that the runner holds a maximum speed of during the whole distance. The advantage of the
tailwind is therefore estimated too large. From the information about her time under controlled
conditions, it is possible derive the size of ", provided that the model holds.

So what is the conclusion of this study? Tailwind or doping?

Matlab code for those interested (This code may need some modi�cations for Octave):

% SCRIPT
global EPS DELTA
% Parameters:
P = 10; % Maximum performance factor [m/s^2]
tau = 1.0; % Relaxation time [s]
M = 60; % Body mass [kg]
A = 0.40; % Cross sectional area [m^2]
rho = 1.2; % Density [kg/m^3]
W = 0 ; % Wind speed [m/s]
Cd = 1; % Drag coefficient
%
EPS = 0.5*rho*Cd*tau^2*P*A/M
DELTA = W/(P*tau)
%
Treal = 0:0.1:12; % NB! Time in seconds
tspan = Treal/tau;
% ODE solver
[t,y] = ode45(@FJfunc,tspan,[0 0]�);
T = t*tau; % Real time
L = P*tau^2*y; % Real distance
plot(T,L); xlabel(�Time [s]�) ; ylabel(�Distance [m]�);
legend(�Position�,�Velocity�)
grid

function dydt = FJfunc(t,y)
global EPS DELTA
dydt = [0 0]�;
dydt(1) = y(2);
dydt(2) = 1-y(2)-EPS*(y(2)-DELTA)*abs(y(2)-DELTA);
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