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OUTLINE OF PRESENTATION:
 Industrial Mathematics

What the Industry Asks For

 Mathematical Modelling

 Traditional and Current Tools
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The Start of Industrial Mathematics (?)

Charles Proteus Steinmetz (1865 -1923)

... his formulation ... simplified alternating current theory to the 
point where it could be understood and used by all engineers
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Society for Industrial and Applied Mathematics’ report on
Mathematics in Industry (1998)

http://www.siam.org/about/mii/

Key elements of the study: 
 Role of mathematics outside academia
 Working environments of nonacademic 

mathematicians
 Views of nonacademic mathematicians and their

managers
 Skills needed for success vs. traditional education
 Strategies for enhancing graduate education
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IMPORTANT SKILLS OF NON-ACADEMIC 
MATHEMATICIANS:

 formulating, modeling, and solving problems from 
diverse areas
 interest in and knowledge of applications
 knowledge of and experience with computations
 communication skills, spoken and written
 adeptness at working with colleagues (’’teamwork’’)
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THE MATHEMATICAL FUNCTIONS OF GREATEST 
VALUE (AS SEEN BY THE MANAGERS):

 modeling and simulation;
 mathematical formulation of problems;
 algorithm and software development;
 problem-solving;
 statistical analysis;
 verifying correctness;
 analysis of accuracy and reliability.
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Most needed skill:

 mathematical formulation of problems
 modelling and simulation

Most important lesson:

”Problems never come formulated as mathematical problems!”

SUMMARY:
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MATHEMATICAL MODELLING



9
TMA 4195 Mathematical Modelling - 2009

Descriptive Explanatory
Regression
PCA/PLS
Neural nets
ARMA/ARIMA/…
Fractal geomertry

Dimensional analysis
Conservation principle-based
Dynamic models
Averaging models

Hybrids
Controlled systems
Markov models with basis in reality
Diff. Eqns. with stochastic input
Stochastic Diff. Eqns.
Geophysical models
Homogenisation models

MODELS
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The main objective is to give the students

 to think before (and while) starting to compute!

MATHEMATICAL MODELLING - OBJECTIVES

 a professional attitude towards problem solving

 how to ask colleagues the right questions, - questions that 
force them to think again about what is really the problem!

 simple techniques to check model consistency and 
do the important primary analysis
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SOME GENERIC MODELLING TOOLS

• forces the modeller to think!
• perturbation/multiple 

scale/asymptotic techniques
• selection of numerical 

techniques

Scaling
• systematic model analysis
• important/not important

Technique Importance Related mathematical 
techniques

Dimensional analysis
• reduce the number of 

parameters
• check model reasonability

• lab. work
• experimental design

• numerical experiments
• data analysis

• models of multi-scale   
stochastic phenomena

(porous media, turbulence)

• stochastic processes/fields
• homogenisation techniques

Averaging
• macroscale behaviour

Conservation laws
• basic requirement of 

models!

• models conform to nature
• develop numerical models

• understand shock  
behaviour

• hyperbolic PDEs
• diffusion equations
• shock tracking num. 

schemes
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There are phenomena in nature where dimensional analysis
gives information we have not yet been able to explain directly!

 based on a fundamental law in physics!

 requires all valid relations to be unit independent

 may prove that a suggested model is impossible

 suggests suitable dimensionless parameters

 gives a minimal number of parameters to be used in
experimental and numerical work

DIMENSIONAL ANALYSIS
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Example from Minitab™

What is the volume of a tree (Black American Cherry tree)
given its height (h) and root diameter (d)?

..……
22.68011.1
18.27511.0
15.66611.0
19.78310.8
18.88110.7
16.47210.5
10.2638.8
10.3658.6
10.3708.3

Volume (v) 
(ft3)

Height (h) 
(ft)

Diameter (d) 
(inch)
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Minitab suggests:

2
3210

3/1 dhdv  

Dimensional analysis suggests (e.g.):









d
h

d
v 3
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Dimensional Analysis Regression
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Minitab suggests:
2

3210
3/1 dhdv  

Dimensional analysis suggests:









d
h

d
v 3

For a “cone”-shaped tree:

  xx
12
 

What about a Fractal Tree?
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THE UNIVERSAL CONSERVATION LAW

 
 RRR

dVtqdtdVt
dt
d ),(),,(),( xnxjx

Change of content      Transport across     Production (q>0)
in control volume           the boundary or destruction (q<0)

1. Identify density, flux, and sources

2. Use Reynold’s Transport Theorem to transform the 
first term when necessary.

 , ,t j x

R
R

 , t x

 ,q tx

n
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INTEGRAL FORM DIFFERENTIAL FORM

Gauss' theorem etc.

( , ) ( , , ) ( , , )t t q t
t

  
 


x j x x

• independent of coordinate system
• direct connection to physics
• required for discontinuous solutions
• basis for conservative numerical
schemes

• classic theory of differential equations  
(analytical solutions, series expansions, 
integral transforms, perturbation  
techniques)

• conventional numerical algorithms
• cannot treat discontinuous solutions  
properly

     , , , ,
R R R

d t dV t d q t dV
dt

  


   x j x n x
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Fluctuations and
mean valueOriginal signal

Get rid of fast, microscopic fluctuations by averaging   

- obtain a macroscopic model for the mean values!

THE AVERAGING PRINCIPLE



21
TMA 4195 Mathematical Modelling - 2009

MODELS REQUIRING AVERAGING

Turbulence, diffusion etc.
Atmospheric models
Ocean circulation
Heat convection in fluids
Pollution spreading
Epidemics

Porous media flow
Ground water
Oil/gas reservoirs

Geophysical modelling
Atmospheric modelling
Climate modelling

Traffic flow
Material science
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OIL  RESERVOIR MODELLING

The “upscaling" problem:
How to get from properties of the small scale samples 

to large scale models of the full reservoir

Pores
~10-5m

Core samples
~10-1m

Full reservoir
~1000m

Well
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SCALING

 The scale is a natural measuring stick for the variable

 Scaling forces problem insight!

 Scaled equations show what is important and what is not

 Scaled equations are important for revealing  
the behaviour of numerical algorithms 

 No scales? - similarity solutions!
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What determines the maximum oil temperature?

OIL COOLING OF A WATER PUMP

A o

Oil 
pump

Oil

Sea water

Tsw

Heat exchanger

Temperature (degs)

x=Lx=0

To

Tw

Water
pump
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VARIABLES AND PARAMETERS
x position
t time
To,w oil/water temperatures
L length of heat exchanger
Tsw sea water temperature
co,w oil, water specific heats
Ao,w oil, water tube cross sections
o,w oil, water densities
ko,w oil/water turbulent heat diffusivities
W water velocity
U oil velocity
 heat exchange coefficient
Q heat production in the water pump

4 variables and 14 parameters !
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After scaling and showing that turbulent heat diffusion is 
negligible, we end up with a linear system and 3 dimensionless 
parameters for the stationary temperature distribution:

Exact solution:
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EXAMPLES OF PREVIOUS 
MODELLING SEMINARS
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 The “1001-1002-1003” gap rule
 Optimal pedestrian crossings
 Modelling of a roundabout
 “The green wave”
 Modelling of multi-lane traffic
 Changing winter conditions
 Road capacity under icy conditions
 Studded tire friction modelling

TRAFFIC MODELLING
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THE SELF-BAKING ELECTRODE
(Provided by Elkem Research, Norway)

Outflow

Baking

Operation

Consumed

T=60o C

T=2000o C

Current 
supply in 

water cooled 
Cu-tubes

Electrode 
mass

Steel casing

Charge

Graphite 
core

Air for 
temp.
control

Electrode 
paste

Downward
velocity V
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Elkem asked us to consider the following 
two main problems:

(A) How can we “shape” the temperature isotherms in the 
upper region of the electrode by changing the slip velocity, 
V, and the temperature on the circulating air?

(B) The current is entered radially into the electrode. Since 
the electric conductivity of the electrode paste is strongly temperature 
dependent, is it possible that this arrangement becomes unstable, 
that is, that one develops hot and cold regions in the electrode?

(For more info: See the Proc. ECMI Modelling Week 2000 from Lund)
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2006 MODELLING SEMINAR 

 Is it really possible to determine ancient temperatures 
by measuring the temperatures in Greenland ice-cores?

 Dynamics of glaciers in a changing climate

 Modelling of the earth’s radiation balance

Will melting polar ice destroy the North Atlantic 
Coastal Current and trigger a new ice age?  

Models Related to Climatic Change
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 Population models with delayed response

 Optimal fish harvesting  (-or bear hunting)

 Improved models for interacting species

 Migration of King Crab along the Norwegian coast

 Spreading of epidemics

 Models for the world’s population

Nice field, interesting results, easy to do numerical  experiments

MODELLING SEMINAR 2007

Modelling of Biological Systems
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Mathematical Modelling Seminar 
Autumn 2008

MATHEMATICAL MODELLING OF A 
CATALYTIC COUNTER-CURRENT 

CHEMICAL REACTOR



34
TMA 4195 Mathematical Modelling - 2009



35
TMA 4195 Mathematical Modelling - 2009

P

A

Separator

Reactor

C
at

al
ys

t r
eg

en
er

at
io

n

C

C+B

Sketch of the Reactor Arrangement

a r

d

k k

k
A B P 



36
TMA 4195 Mathematical Modelling - 2009

A: Substrate to be transformed
B: Intermediate product. Stick to the catalyst’s surface
P: Product  

a r

d

k k

k
A B P 

: Porosity

Reaction equations:
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MATHEMATICAL MODELLING AND THE NEW TOOLS

Computational Science and Engineering
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THE COMSOL MULTIPHYSICSTM SYSTEM
Matlab  PDE Toolbox 

FEMLAB  COMSOL MULTIPHYSICS 
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MODELLING WORKFLOW:
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28271 nodes
137399 elements

MODELLING OF HEAT IN A DISK-BRAKE
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TEMPERATURE DISTRIBUTION

 T T TC k T C y x
t x y

  
   

       

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Mathematics:   Difficult methods applied to simple problems!

Modelling:  Simple methods applied to difficult problems!

THE STUDENTS’ EXPERIENCE:
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Today it is

 easy to measure
 easy to compute
 easy to visualize
 easy to write  

… but still hard to understand what is really going on!

Knowledge and use of mathematics is and will probably 
forever be the best way to understand the world around us.


