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Dimensional matrix A:

QU

T W T
m |1 -1 -1 1 1
s |0 -2 -1 -1 0
k|0 1 1 0 0

The d, pt, u columns are linearly independent, so d, i, u are dimensional independent
and core and possible core variables. By Buckingham’s Pi-theorem there are

5—rankA=5-3=2

dimensional independent combinations, e.g.

T Td

M=—-—=...= ——,

LT gapbye o
r
71'2:&.

By Buckingham’s Pi-theorem again, any dimensionally consistent relation
T =®(d, p,u,r)
is equivalent to a relation
U(my,me) =0,
and solving for m; we find that m = C(my), or 7 = C (d) 1.

r

We introduce the scales ¢* = Cec, x* = Xx,t* = Tt. The natural scales are C = M
and X = L. The scaled equation is

M DM UM
TCt = ?Cl’ﬁ + Tcx + rMe.

By assumption ¢, ¢yy, ¢i, ¢, x,t ~ 1, hence after dividing by M,
1 D U 1 9
fwﬁ_|_f_|_7«:ﬁ(D—I—uL—I—'rL )
Case (i) : D> UL+ rL?
The time scale is then given by % ~ %, and the scaled equation is

¢t = Cpp + €105 + €20,

Whereslz%:%«landsg:rT:Tg) < 1.
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Case (ii) : rL? > D+ UL

The time scale is given by % ~ r, and the scaled equation is
Ct = €1Czq + €2Cz T C,
where €; = % < 1and g3 = % < 1
(i) could model two competing populations of size n; and ny. When ng = 0, the

ni-equation is the logistic equation with bounded population, while if n; = 0,
the no-equation gives exponential growth.

(ii) could model two populations that are mutually beneficial, e.g. as in symbiosis.

We find equilibrium points given by

F—i ni\ _ (ni(l —ny —ans) _0
Cdt \n2) cna(l —nq) -
that is, (n1,n2) € {(0,0), (1,0)}. We examine the stability of the equilibrium points.
To that end consider the Jacobi matrix of F,

DF(n1, m) _ [1 —2n1 — ang —any ]

—cng c(l1—ny)

By inserting the first equilibrium point we get

DF(0,0) = [(1) 2] ,

with at least one positive eigenvalue (A = 1). This implies that (0,0) is unstable.
The second equilibrium point gives

DF(1,0) = [01 0“] :

where max{Re(A)} = 0 and no conclusion.
This is a singular perturbation problem. The only boundary point is ¢ = 0, and the
boundary layer is there. We solve the problem as follows.

(i) Find the outer solution.

(ii) Find the boundary layer thickness and the rescaled equations.

)

)
(iii) Find the inner solution.
(iv) Mathcing in the intermediate region.
)

(v) The uniform approximation.
Implementing the above strategy.
(i) The outer solution solves the equations with € = 0,

to =—z0+ (xo+1)(yo — 1),
0=2x0 — (o + 1)yo.
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The solution is

ro(t)=Ce™ ' — (1 —e™"),

zo(t)

yo(t) = vo) £ 1

where we have used the technique of integrating factor to determine zo(t).

(ii) We rescale the equation ¢t = §7, X (7) = z(t) and Y (7) = y(t). Inserting into
the equations,

1d

S X =X+ (X + DY -1,
e d

SV =X (XY

If we balance terms in the first equation we get § = 1 and recover the outer
solution. If we, on the other hand, balance terms in the second equation we get
0 = €. Hence 6 = ¢ is the other time scale.

(iii) The rescaled equations are

X=e(-X+X+1)(Y-1), X0)=1
Y=X-(X+1)Y, Y(0)=0.

We get the inner solution be letting € = 0, hence

Xi(t)

Yi(t) =

1,
S

(iv) The matching condition is

lim (l'O(t)v yO(t)) = Tlglolo (XI(T)7 }/}(T)) :

t—0t

We calculate the limits using the solutions and get that C' = 1.

(v) The uniform approximation is calculated by summing the inner and outer so-
lution and subtracting the intermediate value. Thus

Ty (t) =27 — 1,

1 1 o
yu(t):1—§et—§e 25.

The kinematic speed is
c(p)=3'(p) =1 - 2p,

and the characteristics are given by

The solution of this system is

z(t) = p(o, to),
z(t) = xo + (t — to)c(p(wo, o))
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[6]

In z > 0, inflow boundary corresponds to ¢ > 0. To find a boundary condition at
x = 0, we convert to Dirichlet condition

3
16 = Jp)=p(l—p),
which gives p = I or p = 3. Since ¢(1) > 0 and ¢(3) < 0, and we can only impose

boundary conditions at 1nﬂow we take
1
p:Zat:E:O,t>0.

The characteristics are

é)v t0:0,$0207t>0,
t—toc(i), zo =0,t > 19 >0,

) t0:O7$0207t>07
, g =0,t >ty > 0.

In the dead sector there is a rarefaction wave solution.
a) Conservation of mass in R

d
p dV = pv -ndo.
dt OR

1 Z+Az  pd(z,0)
/pdV:p/ dy/ / dxdz,
R 0 z 0

and since d is smooth,
d Z+Az
/pdV:p/ di(z,t) dz.
dt Jp 3

(1)

Observe that

Asv-n=—ue, -n,

/ pv -ndo :/ p(—u)(—1)do
OR ORN{z=%}

" /8Rﬂ{zz+Az} p(-u)(=1) do
= p((ud)(2) — (ud)(z + Az)).
If we divide (1) by pAz, we find

1 /Z+AZ d ds — p((ud)(z) — (ud)(z + Az)) ‘

Izp Az

Let Az — 0, use definition of derivative and the fundamental theorem of cal-
culus to see that
0 0

8td o — (ud).
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b) Fix t > 0 and z € [0,1), and let Az > 0 be such that z+ Az < 1. If d(z,¢) =0

then
/ —pge, dV = —/ C&ez do.
R RA{z=0} d

u

pgd(z,t) = Cpu (d) (2,1),

This implies that

and hence

P9 2 2
= —>d° = Kd“.
U Cu

By a), d then satisfies
dy — (Kd*), =0.

Method of characteristics (z(t) = d(xz(t), 1))
= 2Kz = ¢(2), z(0) = zo,
2=0, 2(0) = d(zo,0).
The characteristics are then
z = x0 + te(d(z0,0)),
z = d(x0,0).

Since z1 < 2o implies that d(21,0) < d(z2,0), which again implies that ¢(d(z1,0)) >
(d(zz,())), the characteristics will develop shock. The shock speed via the
Rankine-Hugoniot condition is

5 — _QKp2(Z170) - pZ(szo)

<0
p(Zlv 0) - p(ZQa 0)

so the shock moves downwards.
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