Dimensional Analysis - Concepts

o Physical quantities: R; = v(R;)[R;] = value - unit, j=1,...,m.

e Units: [Ri] = F - F3¥, Fi,...,F, fundamental units.
air .- aim

e Dimension matrix of Ry, ,R,,: A=
dnt dnm

e Change of units = change of values:

aij anj

Lemma 1: F;=xF, x>0 = 0(R)=x"...xa"v(R))

Dimensionless combination: 7= R} ... R} if X#£0, [7] =1

[ ]
e Dimensionally independent R, ..., R, if no dimensionless comb'ns exist
e Physical relations ®(Ry,..., Ry,) = 0 are dimensionally consistent, i.e.

O(v(Ry),...,v(Rm)) =0 < ®U(R1),...,¥(Rm)) =0
for all changes of units F;. (consistent under change of units)
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Dimensional Analysis - Buckingham’s pi-theorem

(A1) Fq,...,F, are fundamental units
(A2) Ry,..., R, are physical quantities
(A3) ®(Ry,...,Rm) = 0is dimensionally consistent.

Lemma 2: Let r = rank A, then Ry, ..., R, have m — r independent
dimensionless combinations.

OBS: The rank = number of linearly independent collumns in the matrix.

Buckingham's pi-theorem:

If (A1) — (A3) hold, then there are m — r independent dimensionless
combinations, and for any set of m — r independent dimensionless
combinations 71, ..., Ty,_,, there is a relation W such that

q)(Rl,...,Rm):O <~ w(ﬂ-lv---aﬂ-mfr):(L

where r = rank A and A is the n x m dimension matrix of Ry,..., Rp.

It remains to prove Lemma 2 and the Pi-theorem.
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Scaling and non-dimensionalizing

’ Produce dimensionless O(1) variabels and dim.less eq'ns with terms < 1

Scaling a variable v*:  v* = Uu  where
scaled variable: v~ 1, [ul=1
scaling constant: U ~ max|u*|, [U] = [u*]
Scaling/nondimensionalizing an equation:
@ scaling all variables in the equation
@ dividing the resulting equation by ~ biggest coefficient.

Finding scales:
- look for combinations of the parameters

- balance 2 dominating (“biggest”) terms in the equation
(using that all scaled variables should be O(1))

solve a reduced problem to find estimates

max |u*|

du*
dt*

typical time scale for u*(t*): T =

max
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Remarks on scaling

Remark 1: 2 dominating terms balanced
= their coefficients are equal and ~ biggest in equation.

= dividing scaled equation by this coefficient:
All variables and coefficients become
dimensionless,
<1, and
2 coefficients = 1.

Remark 2: Different situations = different scales

max |x*|, max |t*|, max|u*|, etc., and the dominating terms in the
equation depend on the situation.

Remark 3: Advantages of scaling:
- minimize the number of parameters/coefficients (experiments!!),
- normalize all variables and coefficients,
- reduce round-off errors in subsequent numerical calculations,

- make small terms visible = easy to do approximations/perturbation.
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Regular Perturbation

1
Given scaled(!) equation: X = TR 0<ex L

1. Perturbation Assumption: x = xg 4+ ex1 + €2x + . ..

2. Insert into equation, expand as power series in &:

. . o 1
Xot+exy+e X+ = —

(1+s(x0+5x1+...))2

2
:—1+25(xo+5x1+...) —352(x0+sx1+...) + ...
= —14+e2x0+%(2xq —3x¢) + ...

3. Equate terms of same order in ¢ — equations for xg, x1, .. .:
o1): so=-1
0(e): % =2x
0(?): % =2x1 — 3¢

5. Solve these equations recursively for xg, x1, X2, . . . .
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Singular Perturbation

Signs:
e Multiple time/space scales
o Initial/boundary layers
@ Small paramater multiplying principal term

@ Naive approximation changes problem completely

Facts:
@ No single scale is good for complete resolution of problem
o Different regions, different scales, different (re)scaled equations
@ Scales found by balancing terms in equation
@ In each region regular perturbation works

@ Matching conditions between perturbation sol'ns of different regions
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Singular Perturbation — first approximation

ey’ +2y'+y=0,0<x<1; y(0)=0,y(1)=1, 0<e<l

1. Guess where boundary layer is: x = a. Here a = 0.

2. Outer solution yo. Set ¢ = 0 and solve equation and boundary
condition outside boundary layer:

1_
2

NIx

2y6+y0=0; yo(l) =1 = yo(x)=e

3. Find length of boundary layer § (the other consistent space scale) by
balancing terms — ... § = &.

4. Rescale equation: (x,y) = (0¢,Y) — Y"(§)+2Y'(§)+eY(§) =0

5. Inner solution y;. Set € = 0 and solve rescaled equation and
boundary condition inside boundary layer.

v +2=0, y(0) =0 = y(§) = C(1— e~ ).
6. Matching. yo ~ y; in intermediate region e C = ez (approx'n!)
E—r

7. Uniform solution: yy(x) = yo(x) + yi(%) — Iimoyo(@n)
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Equilibrium points
1. Equilibrium point = constant solution v, (e.g. of ODEs or PDEs)

2. An equilibrium point wu, is stable if all solutions starting near w,,
remain near u, for all t > 0.

3. Linear stability analysis
© Write solution u = ue + 1, o small perturbation
@ Linearize equation(s) about we:
insert u = ue + I into equation(s)

drop small(=non-linear in ) terms

Result: linear equation(s) for i,
with equilibrium point &7 = 0.

@ Check stability of e =0  (linearized equation(s)!!)

@ Conclusion: fie = 0 stable/unstable indicate that u. stable/unstable.

4. Over time all physical systems tend to be at their stable equilibrium
solutions! (... always small disturbances ...)
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Aggregation of Amoeba

Background: Lack of food — amoeba produce attractant and aggregate.

Question:
Can onset of aggregation be caused by simple, uninteligent mechanism?

Model near onset of aggregation:

@ Physical quantities:
a(x, t), c(x,t) = amoeba, attractant densities; parameters

e Modelling (conservation+diffusion+attraction+production+decay):

0
(1) ar = Px (kaX — /acx), ¢t = Dcy + g1a — goc.

e Equilibrium points (=constant solutions):
Constants (ag, ¢) such that g1a0 = gaco.

@ Linearize equation around (ao, ¢o):
a=ag+3 c=c+¢& 3¢csmall; dropsmall terms
0

() E = (k- la), &= Deutmi—al
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Aggregation of Amoeba

0
(2) = = (kéx - /aOF:X), & = D&y + q13 — got.
Ox
@ Particular solutions of (2): Fourier modes/eigenfunctions
(3,2) = e** cos(Bx)(C1, G2)
solve (2) iff
Q@ o®>+ba+c=0for
b= k,82 + DBZ +qg2 and c= kq2,82 + kDB* — q1la0 3%,
Q@ (G, () satisfy two linear equations (last time).

Every 5 € R — two real o + linear subspace of solutions (Cy, )

@ Boundedness of solutions of (2):
(3,¢) bounded & a <0 < c>0 < ‘kDﬁz + kg > qllao‘

e Unboundedness: kgo < gi1lag = (3,&) blow up at oo for § < 1
o Take Ci, G, arbitrarily small = (0,0) unstable equilibrium pt. of (2)
o Indicate that (a0, o) (< (3, ¢) = (0,0)) unstable equi. pt. of (1)
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Convervation in Continuum Mechanics

The transport theorem: R(t) = {x(t): x = V(x, t),x(to) = x0 € R(to)}
%fR(t) f(x, t)dx}t:t0 = %fR(to) f(x,t)dx|,_ o +faR f(x,t0) (V-n) do

Conservation of mass and momentum:

(1) 4 [epdx+ [spp(V-i)do = [,qdx.

(2) i/p\?dx—&-/ pv(vV-i)do
dt Jg R

d wton’ r r
Transp. @ / PV dx Newton's / fg dx + / fsdo
thm. dt R(t) 2nd law R(t) 8R(f)

body forces surface forces

Newtonian fluid: fs = T - 7, Ti=—(p+3uV - V)5 + (5 d": — g:f)

Differential form - the Navier-Stokes equations:
(1) pe+V-(pV)=gq
(2) (pvi)e +V - (pviv) =fgi— t’%- + u(V3v; + %%(V V), i=1,23
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Flow in rivers — the shallow water equations

z

Assumptions: X
© v, h depend only on x, t; a small; p = const.
© Dominant forces in x-direction:
0 Gravity z?g -8 = pgsina
© Hydrostatic pressure f; cé~ —pg(h—z)(i- &)
© Bottom friction f; - & = —pCsv/>

Control volume: R = {(x,y,z) : x € [x0, X0 + Ax],y € [0, B],z € [0, h(x, to)]}
Conservation of mass and momentum in x-direction:

4 [opdx+ [, (Vi) do =0,

4 vadx+f8va(\7-ﬁ)dU:le?g-gde—&—faR(ﬁ,—&-)?f)-é’de.
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Flow in rivers — the shallow water equations

Compute all integrals, divide by common factor pB:

4 [ X b dx + [(vh) (x0 + Ax) — (vh)(x0)] = 0,

&[22 vhdx + [(v2h)(x0 + Ax) — (vh)(x0)]
= fx°+ ghsinadx — §[h?(xo + Ax) — h*(x0)] — f;;ﬁAX Crv? dx.
Divide by Ax, let Ax — 0:

Oh 0
a*‘&( vh) =0,

%(vh) + (,%(vzh + %hz) = ghsina — Cev2.

This is the shallow water equations or St. Venant system.
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