Dimensional Analysis - Concepts

- Physical quantities: $R_j = v(R_j)[R_j] = \text{value} \cdot \text{unit}, \quad j = 1, ..., m.$
- Units: $[R_j] = F_1^{a_{1j}} \cdots F_n^{a_{nj}}, \quad F_1, \dots, F_n \text{ fundamental units.}$
- Dimension matrix of R_1, \dots, R_m : $A = \begin{bmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{bmatrix}$
- Change of units ⇒ change of values:

Lemma 1:
$$F_i = x_i \hat{F}_i$$
, $x_i > 0 \quad \Rightarrow \quad \hat{v}(R_j) = x_1^{a_{1j}} \dots x_n^{a_{nj}} v(R_j)$

- Dimensionless combination: $\pi=R_1^{\lambda_1}\cdots R_m^{\lambda_m}$ if $\vec{\lambda}\neq 0$, $[\pi]=1$
- ullet Dimensionally independent R_1,\ldots,R_s if no dimensionless comb'ns exist
- Physical relations $\Phi(R_1, \dots, R_m) = 0$ are dimensionally consistent, i.e.

$$\Phi(v(R_1),\ldots,v(R_m))=0 \quad \Leftrightarrow \quad \Phi(\hat{v}(R_1),\ldots,\hat{v}(R_m))=0$$

for all changes of units \hat{F}_i . (consistent under change of units)

Dimensional Analysis - Buckingham's pi-theorem

- (A1) F_1, \ldots, F_n are fundamental units
- (A2) R_1, \ldots, R_m are physical quantities
- (A3) $\Phi(R_1, \ldots, R_m) = 0$ is dimensionally consistent.

Lemma 2: Let $r = \operatorname{rank} A$, then R_1, \ldots, R_m have m - r independent dimensionless combinations.

OBS: The rank = number of linearly independent collumns in the matrix.

Buckingham's pi-theorem:

If (A1) – (A3) hold, then there are m-r independent dimensionless combinations, and for any set of m-r independent dimensionless combinations π_1, \ldots, π_{m-r} , there is a relation Ψ such that

$$\Phi(R_1,\ldots,R_m)=0 \quad \Leftrightarrow \quad \Psi(\pi_1,\ldots,\pi_{m-r})=0,$$

where $r = \operatorname{rank} A$ and A is the $n \times m$ dimension matrix of R_1, \ldots, R_m .

It remains to prove Lemma 2 and the Pi-theorem. TMA4195 Mathematical Modeling

Scaling and non-dimensionalizing

Produce dimensionless O(1) variabels and dim.less eq'ns with terms $\lesssim 1$

```
Scaling a variable u^*: u^* = Uu where scaled variable: u \sim 1, [u] = 1 scaling constant: U \sim \max |u^*|, [U] = [u^*]
```

Scaling/nondimensionalizing an equation:

- scaling all variables in the equation
- ullet dividing the resulting equation by \sim biggest coefficient.

Finding scales:

- look for combinations of the parameters
- balance 2 dominating ("biggest") terms in the equation (using that all scaled variables should be O(1))
- solve a reduced problem to find estimates
- typical time scale for $u^*(t^*)$: $T = \frac{\max |u^*|}{\max \left| \frac{du^*}{dt^*} \right|}$

Remarks on scaling

Remark 1: 2 dominating terms balanced

- \Rightarrow their coefficients are equal and \sim biggest in equation.
- \Rightarrow dividing scaled equation by this coefficient:

All variables and coefficients become dimensionless,

 $\lesssim 1$, and

2 coefficients = 1.

Remark 2: Different situations ⇒ different scales

 $\max |x^*|$, $\max |t^*|$, $\max |u^*|$, etc., and the dominating terms in the equation depend on the situation.

Remark 3: Advantages of scaling:

- minimize the number of parameters/coefficients (experiments!!),
- normalize all variables and coefficients,
- reduce round-off errors in subsequent numerical calculations,
- make small terms visible \Rightarrow easy to do approximations/perturbation.

Regular Perturbation

Given scaled(!) equation:
$$\ddot{x} = -\frac{1}{(1+\varepsilon x)^2}$$
, $0 < \varepsilon \ll 1$.

- 1. Perturbation Assumption: $x = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \dots$
- 2. Insert into equation, expand as power series in ε :

$$\ddot{x_0} + \varepsilon \ddot{x_1} + \varepsilon^2 \ddot{x_2} + \dots = -\frac{1}{\left(1 + \varepsilon(x_0 + \varepsilon x_1 + \dots)\right)^2}$$

$$= -1 + 2\varepsilon \left(x_0 + \varepsilon x_1 + \dots\right) - 3\varepsilon^2 \left(x_0 + \varepsilon x_1 + \dots\right)^2 + \dots$$

$$= -1 + \varepsilon 2x_0 + \varepsilon^2 (2x_1 - 3x_0^2) + \dots$$

3. Equate terms of same order in $\varepsilon \longrightarrow$ equations for x_0, x_1, \ldots :

$$O(1): \quad \ddot{x_0} = -1$$
 $O(\varepsilon): \quad \ddot{x_1} = 2x_0$
 $O(\varepsilon^2): \quad \ddot{x_2} = 2x_1 - 3x_0^2$

5. Solve these equations recursively for x_0, x_1, x_2, \ldots

Singular Perturbation

Signs:

- Multiple time/space scales
- Initial/boundary layers
- Small paramater multiplying principal term
- Naive approximation changes problem completely

Facts:

- No single scale is good for complete resolution of problem
- Different regions, different scales, different (re)scaled equations
- Scales found by balancing terms in equation
- In each region regular perturbation works
- Matching conditions between perturbation sol'ns of different regions

Singular Perturbation – first approximation

$$\varepsilon y'' + 2y' + y = 0, \ 0 < x < 1; \quad y(0) = 0, \ y(1) = 1; \quad 0 < \varepsilon \ll 1.$$

- 1. Guess where boundary layer is: x = a. Here a = 0.
- 2. Outer solution y_O . Set $\varepsilon = 0$ and solve equation and boundary condition outside boundary layer:

$$2y'_O + y_O = 0$$
; $y_O(1) = 1 \implies y_O(x) = e^{\frac{1}{2} - \frac{x}{2}}$.

- 3. Find length of boundary layer δ (the other *consistent* space scale) by balancing terms $\rightarrow \dots \delta = \varepsilon$.
- 4. Rescale equation: $(x, y) = (\delta \xi, Y) \rightarrow Y''(\xi) + 2Y'(\xi) + \varepsilon Y(\xi) = 0$
- 5. Inner solution y_I . Set $\varepsilon = 0$ and solve rescaled equation and boundary condition inside boundary layer.

$$y_I'' + 2y_I = 0$$
, $y_I(0) = 0 \implies y_I(\xi) = C(1 - e^{-2\xi})$.

- 6. Matching. $y_0 \approx y_I$ in intermediate region $\underset{\varepsilon \to 0}{\rightarrow} \dots C = e^{\frac{1}{2}}$ (approx'n!)
- 7. Uniform solution: $y_U(x) = y_O(x) + y_I(\frac{x}{\delta}) \lim_{x \to 0} y_O(\Theta \eta)$

Equilibrium points

- 1. **Equilibrium point** = constant solution u_e (e.g. of ODEs or PDEs)
- 2. An equilibrium point u_e is **stable** if all solutions starting near u_e , remain near u_e for all $t \ge 0$.
- 3. Linear stability analysis
 - **1** Write solution $u = u_e + \tilde{u}$, \tilde{u} small perturbation
 - **2** Linearize equation(s) about u_e :

```
insert u = u_e + \tilde{u} into equation(s)
```

drop small(=non-linear in \tilde{u}) terms

Result: linear equation(s) for \tilde{u} , with equilibrium point $\tilde{u}_e = 0$.

- 3 Check stability of $\tilde{u}_e = 0$ (linearized equation(s)!!)
- **4** Conclusion: $\tilde{u}_e = 0$ stable/unstable indicate that u_e stable/unstable.
- 4. Over time all physical systems tend to be at their stable equilibrium solutions! (... always small disturbances ...)

Aggregation of Amoeba

Background: Lack of food \rightarrow amoeba produce attractant and aggregate.

Question:

Can onset of aggregation be caused by simple, uninteligent mechanism?

Model near onset of aggregation:

- Physical quantities: a(x, t), c(x, t) = amoeba, attractant densities; parameters
- Modelling (conservation+diffusion+attraction+production+decay):

(1)
$$a_t = \frac{\partial}{\partial x} \Big(k a_x - l a c_x \Big), \qquad c_t = D c_{xx} + q_1 a - q_2 c.$$

- Equilibrium points (=constant solutions): Constants (a_0, c_0) such that $q_1 a_0 = q_2 c_0$.
- Linearize equation around (a_0, c_0) : $a = a_0 + \tilde{a}, \quad c = c_0 + \tilde{c}; \quad \tilde{a}, \tilde{c} \text{ small}; \quad \text{drop small terms}$

(2)
$$\tilde{a}_t = \frac{\partial}{\partial x} \left(k \tilde{a}_x - l a_0 \tilde{c}_x \right), \qquad \tilde{c}_t = D \tilde{c}_{xx} + q_1 \tilde{a} - q_2 \tilde{c}.$$

Aggregation of Amoeba

(2)
$$\tilde{a}_t = \frac{\partial}{\partial x} \Big(k \tilde{a}_x - l a_0 \tilde{c}_x \Big), \qquad \tilde{c}_t = D \tilde{c}_{xx} + q_1 \tilde{a} - q_2 \tilde{c}.$$

Particular solutions of (2): Fourier modes/eigenfunctions

$$(\tilde{a},\tilde{c})=e^{\alpha t}\cos(\beta x)(C_1,C_2)$$

solve (2) iff

$$b=k\beta^2+D\beta^2+q_2 \quad \text{and} \quad c=kq_2\beta^2+kD\beta^4-q_1la_0\beta^2,$$

 (C_1, C_2) satisfy two linear equations (last time).

Every $\beta \in \mathbb{R} \to \text{two real } \alpha + \text{linear subspace of solutions } (C_1, C_2)$

• Boundedness of solutions of (2):

$$(\tilde{a}, \tilde{c})$$
 bounded $\Leftrightarrow \alpha \leq 0 \Leftrightarrow c \geq 0 \Leftrightarrow kD\beta^2 + kq_2 \geq q_1la_0$

- Unboundedness: $kq_2 < q_1 la_0 \Rightarrow (\tilde{a}, \tilde{c})$ blow up at ∞ for $\beta \ll 1$
 - Take C_1, C_2 arbitrarily small $\Rightarrow (0,0)$ unstable equilibrium pt. of (2)
 - Indicate that (a_0, c_0) (\Leftrightarrow $(\tilde{a}, \tilde{c}) = (0, 0)$) unstable equi. pt. of (1)

Convervation in Continuum Mechanics

The transport theorem:
$$R(t) = \{x(t) : \dot{x} = \vec{v}(x, t), x(t_0) = x_0 \in R(t_0)\}$$

 $\frac{d}{dt} \int_{R(t)} f(x, t) \, dx \big|_{t=t_0} = \frac{d}{dt} \int_{R(t_0)} f(x, t) \, dx \big|_{t=t_0} + \int_{\partial R(t_0)} f(x, t_0) \, (\vec{v} \cdot \vec{n}) \, d\sigma$

Conservation of mass and momentum:

(1)
$$\frac{d}{dt} \int_{R} \rho \, dx + \int_{\partial R} \rho \left(\vec{\mathbf{v}} \cdot \vec{\mathbf{n}} \right) d\sigma = \int_{R} q \, dx.$$

(2)
$$\frac{d}{dt} \int_{R} \rho \vec{v} \, dx + \int_{\partial R} \rho \vec{v} \, (\vec{v} \cdot \vec{n}) \, d\sigma$$

$$\stackrel{\text{Transp.}}{\underset{\text{thm.}}{=}} \frac{d}{dt} \int_{R(t)} \rho \vec{v} \, dx \stackrel{\text{Newton's}}{\underset{\text{2nd law}}{=}} \int_{R(t)} \vec{f}_{B} \, dx + \int_{\partial R(t)} \vec{f}_{S} \, d\sigma$$
body forces surface forces

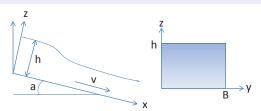
Newtonian fluid:
$$\vec{f}_S = T \cdot \vec{n}$$
, $T_{ij} = -(p + \frac{2}{3}\mu\nabla \cdot \vec{v})\delta_{ij} + \mu(\frac{\partial v_i}{\partial x_i} - \frac{\partial v_j}{\partial x_i})$

Differential form - the Navier-Stokes equations:

(1')
$$\rho_t + \nabla \cdot (\rho \vec{v}) = q$$

(2')
$$(\rho v_i)_t + \nabla \cdot (\rho v_i \vec{v}) = f_{B,i} - \frac{\partial p}{\partial x_i} + \mu (\nabla^2 v_i + \frac{1}{3} \frac{\partial}{\partial x_i} (\nabla \cdot \vec{v})), i = 1, 2, 3$$

Flow in rivers – the shallow water equations



Assumptions:

- **1** v, h depend only on x, t; a small; $\rho = const.$
- 2 Dominant forces in x-direction:

 - **2** Hydrostatic pressure $\vec{f}_p \cdot \vec{e}_x \approx -\rho g(h-z)(\vec{n} \cdot \vec{e}_x)$
 - **3** Bottom friction $\vec{f}_f \cdot \vec{e}_x = -\rho C_f v^2$

Control volume: $R = \{(x, y, z) : x \in [x_0, x_0 + \Delta x], y \in [0, B], z \in [0, h(x, t_0)]\}$

Conservation of mass and momentum in x-direction:

$$\frac{d}{dt} \int_{R} \rho \, dx + \int_{\partial R} \rho \left(\vec{v} \cdot \vec{n} \right) d\sigma = 0,$$

$$\frac{d}{dt} \int_{B} \rho v \, dx + \int_{\partial B} \rho v \left(\vec{v} \cdot \vec{n} \right) d\sigma = \int_{B} \vec{f}_{g} \cdot \vec{e}_{x} \, dx + \int_{\partial B} (\vec{f}_{g} + \vec{f}_{f}) \cdot \vec{e}_{x} \, d\sigma.$$

Flow in rivers - the shallow water equations

Compute all integrals, divide by common factor ρB :

$$\begin{split} & \frac{d}{dt} \int_{x_0}^{x_0 + \Delta x} h \, dx + [(vh)(x_0 + \Delta x) - (vh)(x_0)] = 0, \\ & \frac{d}{dt} \int_{x_0}^{x_0 + \Delta x} vh \, dx + [(v^2h)(x_0 + \Delta x) - (v^2h)(x_0)] \\ & = \int_{x_0}^{x_0 + \Delta x} gh \sin a \, dx - \frac{g}{2} [h^2(x_0 + \Delta x) - h^2(x_0)] - \int_{x_0}^{x_0 + \Delta x} C_f v^2 \, dx. \end{split}$$

Divide by Δx , let $\Delta x \rightarrow 0$:

$$\begin{split} &\frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(vh) = 0, \\ &\frac{\partial}{\partial t}(vh) + \frac{\partial}{\partial x}\left(v^2h + \frac{g}{2}h^2\right) = gh\sin a - C_f v^2. \end{split}$$

This is the shallow water equations or St. Venant system.