
TMA4195 - MATHEMATICAL MODELING (FALL 2013).

PROJECT DESCRIPTION.

SOME QUANTITATIVE MODELS IN OIL RECOVERY.

Introduction

In this project, we want to set up simple models which can give us quantitative
results about the profitability of reservoirs, depending on their physical properties
(both for the rock and the oil) and of the initial configuration.

1. Primary recovery

Reservoirs are porous media. The amount of pores in the media determines the
porosity which is the fraction of volume that fluids can occupy inside the material.
The pores are connected so that the fluids may move through the media. The resis-
tance that the rock opposes to the fluid flow is characterized by the permeability, a
parameter which is introduced later in the text. As a result of geological processes,
pressure builds up in reservoirs. The rock is compressed and the volume of oil
contained in the rock increases. Then, a significant part of the oil can be recovered
by simply drilling a well in the formation. When the well is opened, the pressure
decreases in the reservoir, the rock expands and presses the oil out of the reservoir
through the well. This phase of oil recovery is called primary recovery. The amount
of oil that can be extracted in this way depends on the compressibility of the rock,
which relates the density of the rock with pressure, and the initial pressure in the
reservoir.

Let us denote by φ the porosity of the rock. For a compressible rock, φ depends
on the pressure. If we denote by cr the rock compressibility, we have

1

φ

dφ

dp
= cr.

Let pb,initial be the initial pressure at the bottom of the well, before the well has
been opened, and pb denote the pressure at the bottom of the well at the end of the
primary recovery when hydrostatic equilibrium is reached inside the whole reservoir
so that we have

(1.1) pb = patmospheric + ρog(zb − z0),

see Figure 1. Here, ρo denotes the density of the oil, zb the depth of the well and
z0 the reference depth where the pressure is equal to patmospheric.

Question 1a. We assume that the reservoir is initially completely filled with oil.
Compute the fraction of the oil that can be recovered by primary recovery and show
that

(1.2)
Amount of recovered oil

Total initial amount of oil in reservoir
= 1− e−cr(pb,initial−pb).
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Figure 1. Reservoir description

We want now to study the evolution of the production rate in the well during
primary recovery. The rock is a porous media and the volume flux of the flow is
described by Darcy’s law:

(1.3) u = − 1

µ
K(∇p+ ρogez).

Here, u is the volume flux per unit area, µ is the viscosity, K is the permeability
matrix, g the gravity constant and ez = [0, 0, 1]t. The permeability matrix de-
pends on the type of the rock and, therefore, it is usually a function of the spatial
coordinates, that is, K = K(x, y, z).

Question 1b. Show that the equation corresponding to the mass conservation of
oil is given by

(1.4)
∂φ(p)

∂t
−∇ · ( 1

µ
K(x, y, z)(∇p+ ρogez)) = 0

This equation is of parabolic type.

Question 1c (Open). We want to compute the fraction of recovered oil as a
function of time to see how fast the limiting value given in (1.2) is reached. In
this aim, simplify (1.4) as much as you need in order to obtain an equation in
one dimension which you can solve, using for example the method of separation of
variables. Let us first assume that the well is located at one end of the interval
domain. On the other end, we impose no flux boundary conditions. To simplify the
equation, you may use some of the following assumptions

• Assume that the porosity function φ(p) is an affine function of pressure.
• Simple geometry of the reservoir.
• Symmetries in the horizontal plane (cylindrical invariance or translation

invariance in the x and y direction)
• Hydrostatic equilibrium in the vertical direction, that is,

p(t, x, y, z) = p(t, x, y, zb) + ρog(z − zb)

• Constant rock permeability, that is, K(x, y, z) = K, for a given constant
matrix K.

• Scalar permeability matrix, that is, K = k Id, for k ∈ R.
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What is the effect of moving the well to the middle of the interval? What about
adding more wells?

Question 1d (Open). In several space dimensions, how do we model the well?
What are the boundary conditions? Find a numerical scheme which can solve Equa-
tion (1.4) and implement the scheme.

2. Secondary Recovery

Secondary recovery consists of injecting water into the reservoir to restore a
pressure gradient which can displace the oil which is left after primary recovery. One
of the issue here is that oil and water have different mobilities. Morally speaking,
because water is less viscous, it travels faster than oil. The consequence is that we
end up by producing in one end the water we are injecting in the other end. We want
to set up equations which enable us to understand and quantify this phenomenon.
We have two phases, water and oil. For a given phase α (α = w for water and α = o
for oil), the saturation sα represents the fraction of the pore volume occupied by
the phase α. Since water and oil fill up the whole pore volume, we have sw+so = 1.
Again we use Darcy law, which holds for each phase α ∈ {w, o}:

(2.1) uα = − sα
µα
k∇p.

Here, we neglect gravity and consider a constant scalar permeability. Again, mass
conservation of water and oil give us the governing equations for the system,

(2.2)
∂sαφρα
∂t

−∇ ·
(ραsα
µα

k∇p
)

= 0,

for α ∈ {w, o}

Question 2a. Explain the presence of the term sα in (2.1) and derive the mass
conservation equations (2.2).

We simplify the equation by considering the one dimensional case. We assume
that the rock and the liquids are incompressible, that is, the porosity φ and the
densities ρw, ρo are constant. Then, we obtain

φ
∂sw
∂t
− ∂

∂x

(ksw
µw

∂p

∂x

)
= 0,(2.3a)

φ
∂so
∂t
− ∂

∂x

(kso
µo

∂p

∂x

)
= 0,(2.3b)

sw + so = 1.(2.3c)

Let u = uw + uo denote the total flux.

Question 2b. Show that u is constant in space.

We consider the initial configuration described in Figure 2a where we have only
water for negative x and only oil for positive x. We inject water from the left at a

(a) Initial Condition (b) The water penetrates in the oil region

Figure 2. One dimensional case.

constant rate, that is, we impose limx→−∞ u(t, x) = ū, for a constant ū ≥ 0.
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Question 2c. Show that u(t, x) = ū for all t and x and that the equations (2.3a)
then reduce to

(2.4) φ
∂sw
∂t

+
∂

∂x

(
f(sw)ū

)
= 0

and find the expression for f . The function f is called fractional flow.

For the initial data given above, equation (2.4) admits self similar solutions. In
Figure 2b, we sketch the solution for a given time t > 0 and we observe that the
water penetrates gradually in the oil region.

Question 2d (Open). We consider a one dimensional reservoir which spans the
half-line x ≥ 0. At the beginning, it is full of oil, that is, s(0, x) = 0 for x ≥ 0. We
model the injection of water at x = 0 by setting s(0, x) = 1 for x < 0. We assume
we have a production well located at a point P on the positive x axis (xP > 0) and
we start injecting water at x = 0 with a rate ū. Estimate the time it takes for the
water to reach P , that is, the first time when s(t, xP ) becomes non zero. Estimate
the amount of water that goes through P before all the oil initially contained between
O and P has been recovered. Relate your result to the viscosity ratio µo/µw so that
you can comment on the difficulties highly viscous oil cause in oil recovery.

For two phases flow, the Darcy law as given in (2.1) is in general not a good
approximation and it is replaced by the following more general form

(2.5) uα = −krα(sα)

µα
k∇p,

where the function krα, which is called the relative permeability, is a given function
of the saturation sα, for each phase. Corey permeabilities, which are given by

krw = k0rws
Nw
w and kro = sNo

o ,

for some constants Nw, No, k
0
rw, are commonly used.

Question 2e (Open). Set up and implement a numerical scheme to solve (2.4).
Note that Equation (2.4) is hyperbolic and the numerical computation of its solution
therefore requires an upwind method. Compute the solution for (2.4) with the same
initial data as in Question 2d but now for nonlinear Corey permeabilities (take
Nw = No = 2 and k0rw = 1). Comment on the differences between the solutions for
linear relative permeabilities (Nw = No = 1 and k0rw = 1, as in Question 2d) and
nonlinear relative permeabilities.

3. The cost of heterogeneity

In a reservoir, the variation of the permeability of the rock is usually very im-
portant. A typical example being a fracture: The permeability within the fracture
is very high compared to the neighboring rock. Such heterogeneity in the reser-
voir complicates recovery as the water which is injected travels fast through the
region of high permeability and reach the producing wells possibly long before the
oil which is trapped in the region of low permeability. This induces an extra cost as
the oil needs to be separated from water in the producing well and more water has
to be injected. Let us set up a simple model for which this cost can be estimated.
We consider a two dimensional box consisting of horizontal layers with different
permeabilities, see Figure 3. On the left and right sides, we have injecting and
producing vertical wells with constant pressure equal to pi on the left and po on the
right (pi > po). Let c1 be the price of oil per 1 m3 and c2 be the cost of producing
1 m3 of water (which corresponds to the cost for separation).
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Figure 3. Reservoir consisting of horizontal layers with different permeability. We
inject water from the left. Oil is produced from the right.

We consider the same model as in Section 2, still using a scalar permeability but
now depending on x. We obtain the mass conservation equations

(3.1)
∂sαφρα
∂t

−∇ ·
(ραsα
µα

k(x, y)∇p
)

= 0,

for each phase α = {w, o}. We assume that the fluids and the rock are incom-
pressible and that the oil and water have the same viscosities, µw = µo. Then, the
equations (3.1) reduce to the following equation for the pressure

(3.2) ∇ · (k(x, y)∇p) = 0.

Question 3a. Derive the mass conservation equations (3.1) and the pressure equa-
tion (3.2).

Question 3b (Open). Use equation (3.2) to compute the oil production rate and
the operation costs, as functions of time. Justify the fact that the equation decouple
for each layer. Consider then the case when N →∞ and the width of each layer goes
to zero, that is, the case where the permeability depends only on y, k(x, y) = k(y).

We now look at a multidimensional case, here a 2D square with an injecting well
in the middle and four producing wells located at each corner, also called five spots
reservoir, see Figure 4

Figure 4. A five spots reservoir, with four production wells Pi, i = 1, . . . , 4 at the
corners and an injection well I in the middle.

Question 3c (Open). Given a permeability distribution k(x, y), derive and im-
plement a finite volume formulation for this 2D reservoir. In particular, propose a
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way to compute the transmissibilities between adjacent cells when they have different
permeabilities (Look first at the one dimensional case).

The time of flight corresponds to the time for a particle in the flow to travel
between two points (here from the injecting well to one of the producing wells). To
solve (3.2), we use Matlab Reservoir Simulation Toolbox1, an open access simulation
code developed at Sintef for solving multiphase flow in porous media. We compute
the solution to the pressure equation (3.2) and the time of flight. The code can be
downloaded from the website of the course. The results are presented in Figure 5
and 6 for two types of reservoirs, one with constant permeability and the other with
a randomly generated permeability. In Figure 7, we plot some streamlines that we
numerate. In Tables 1 and 2, the time of flight for each streamline and the fluxes
between the streamlines are given.

Question 3d (Open). Give a mathematical definition of time of flight. Use the
data in Tables 1 and 2 to estimate the operation costs. Compare the costs for the
two reservoirs. Use the Matlab code to generate more streamlines. Set up other
cases, with different permeability distribution, and compare the results.

Figure 5. Pressure for case with uniform permeability

1http://www.sintef.no/Projectweb/Mrst/
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(a) Permeability

(b) Pressure

Figure 6. Case with randomly generated permeability
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(a) Uniform case

(b) Random case

Figure 7. Streamlines
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Table 1. Time of flight (in days) for given streamlines.

Streamline Uniform case Random case
1 1.5941015e+01 9.0438300e+02
2 2.1660807e+01 9.0523031e+02
3 1.7417845e+01 6.4953383e+02
4 1.5094670e+01 5.1394315e+02
5 4.6678338e+01 1.4114392e+03
6 1.6075629e+01 7.3539674e+02
7 1.9827070e+01 8.2575785e+02
8 1.8775226e+01 6.8812618e+02
9 1.7321176e+01 8.2367322e+02
10 4.9462737e+01 1.3325871e+03
11 1.6265244e+01 8.4871740e+02

Table 2. Flux in (in m3/day) the streamline regions.

Streamline Uniform case Random case
1-2 9.4814770e+00 9.5715519e-02
2-3 9.0815331e+00 6.1852181e-01
3-4 9.7821966e+00 3.3314700e-01
4-5 1.1179679e+01 3.2576263e-01
5-6 1.0782385e+01 2.3522192e-01
6-7 1.0776050e+01 1.3414368e-01
7-8 1.0830640e+01 1.6854593e-01
8-9 1.0480024e+01 2.2661259e-01
9-10 9.7365972e+00 2.2514665e-01
10-11 9.3639352e+00 2.2613517e-01
11-1 3.7768601e+00 3.5882577e-02
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