Dimensional Analysis - Concepts

- Physical quantities: $R_j = v(R_j)[R_j] = \text{value} \cdot \text{unit}, \quad j = 1, ..., m.$
- Units: $[R_j] = F_1^{a_{1j}} \cdots F_n^{a_{nj}}, \quad F_1, \dots, F_n \text{ fundamental units.}$
- Dimension matrix of R_1, \dots, R_m : $A = \begin{bmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{bmatrix}$
- Change of units ⇒ change of values:

Lemma 1:
$$F_i = x_i \hat{F}_i$$
, $x_i > 0 \quad \Rightarrow \quad \hat{v}(R_j) = x_1^{a_{1j}} \dots x_n^{a_{nj}} v(R_j)$

- Dimensionless combination: $\pi = R_1^{\lambda_1} \cdots R_m^{\lambda_m}$ if $\vec{\lambda} \neq 0$, $[\pi] = 1$.
- Dimensional independent R_1, \ldots, R_s if no dimensionless comb'ns exists.
- Physical relations $\Phi(R_1, \dots, R_m) = 0$ are dimensionally consistent, i.e.

$$\Phi(v(R_1),\ldots,v(R_m))=0 \quad \Leftrightarrow \quad \Phi(\hat{v}(R_1),\ldots,\hat{v}(R_m))=0$$

for all changes of units \hat{F}_i . (consistent under change of units)

Dimensional Analysis - Buckingham's pi-theorem

- (A1) F_1, \ldots, F_n are fundamental units
- (A2) R_1, \ldots, R_m are physical quantities
- (A3) $\Phi(R_1, \dots, R_m) = 0$ is dimensionally consistent.
 - **Lemma 2:** Let $r = \operatorname{rank} A$, then R_1, \ldots, R_m have m r independent dimensionless combinations.

OBS: The rank = number of linearly independent collumns in the matrix.

Buckingham's pi-theorem:

If (A1) – (A3) hold, then there are independent dimensionless combinations π_1, \ldots, π_{m-r} and a relation Ψ such that

$$\Phi(R_1,\ldots,R_m)=0 \quad \Leftrightarrow \quad \Psi(\pi_1,\ldots,\pi_{m-r})=0,$$

where $r = \operatorname{rank} A$ and A is the $n \times m$ dimension matrix of R_1, \ldots, R_m .

It remains to prove Lemma 2 and the Pi-theorem.